SHORT COMMUNICATION
Artificial intelligence and improvement of stem cell delivery in healthcare
 
More details
Hide details
1
Medical Profession Program, Faculty of Medicine, Sriwijaya University, Palembang, INDONESIA
 
 
Online publication date: 2023-06-10
 
 
Publication date: 2023-09-01
 
 
Electron J Gen Med 2023;20(5):em516
 
KEYWORDS
ABSTRACT
Artificial intelligence (AI) is critical for improving the quality of stem cell manufacturing and delivery. AI can assist in determining the viability, effectiveness, efficacy, and safety of stem cells. Furthermore, in stem cell and regenerative medicine, AI is utilized to streamline simulation and model-building processes and find connections between cellular activities and their microenvironments. However, thoughtful consideration is required to minimize unwanted implications of AI incorporation for stem cell-based treatment.
REFERENCES (12)
1.
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther. 2019;10:68. https://doi.org/10.1186/s13287... PMid:30808416.
 
2.
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Futur Healthc J. 2019;6:94-8. https://doi.org/10.7861/future... PMid:31363513.
 
3.
Srinivasan M, Thangaraj SR, Ramasubramanian K, Thangaraj PP, Ramasubramanian KV. Exploring the Current Trends of Artificial Intelligence in Stem Cell Therapy: A Systematic Review. Cureus. 2021;13:1-14. https://doi.org/10.7759/cureus... PMid:34873560.
 
4.
Ramakrishna RR, Abd Hamid Z, Wan Zaki WMD, Huddin AB, Mathialagan R. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology. PeerJ. 2020;8:e10346. https://doi.org/10.7717/peerj.... PMid: 33240655.
 
5.
Al-Kharusi G, Dunne NJ, Little S, Levingstone TJ. The Role of Machine Learning and Design of Experiments in the Advancement of Biomaterial and Tissue Engineering Research. Bioengineering. 2022;9:561. https://doi.org/10.3390/bioeng... PMid:36290529.
 
6.
Joy DA, Libby ARG, McDevitt TC. Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing morphogenesis. Stem Cell Reports. 2021;16: 1317-30. https://doi.org/10.1016/j.stem... PMid:33979602.
 
7.
Mota SM, Rogers RE, Haskell AW, McNeill EP, Kaunas R, Gregory CA, et al. Automated mesenchymal stem cell segmentation and machine learning-based phenotype classification using morphometric and textural analysis. J Med Imaging. 2021;8:1-20. https://doi.org/10.1117/1.jmi.... PMid:33542945.
 
8.
Coronnello C, Francipane MG. Moving Towards Induced Pluripotent Stem Cell-based Therapies with Artificial Intelligence and Machine Learning. Stem Cell Rev Reports. 2022;18:559-69. https://doi.org/10.1007/s12015... PMid:34843066.
 
9.
Sebastian S. Implementing robotics and artificial intelligence. Elife. 2022;11:e80609. https://doi.org/10.7554/elife.... PMid:35856938.
 
10.
Doulgkeroglou M-N, Di Nubila A, Niessing B, König N, et al. Automation, Monitoring, and Standardization of Cell Product Manufacturing. Front Bioeng Biotechnol. 2020;8:811. https://doi.org/10.3389/fbioe.... PMid:32766229.
 
11.
Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol. 2022;35:23-32. https://doi.org/10.1038/s41379... PMid:34611303.
 
12.
Orita K, Sawada K, Koyama R, Ikegaya Y. Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived cardiomyocytes. J Pharmacol Sci. 2019;140:313-6. https://doi.org/10.1016/j.jphs... PMid:31113731.
 
eISSN:2516-3507
Journals System - logo
Scroll to top