REVIEW ARTICLE
Association of manganese superoxide dismutase Ala16Val gene polymorphism with diabetic retinopathy risk in type 2 diabetes: A systematic review and meta-analysis
More details
Hide details
1
Faculty of Medicine, Universitas Airlangga, Surabaya, INDONESIA
2
Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, INDONESIA
3
Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Dr. Soetomo Teaching Hospital, Faculty of Medicine, Universitas Airlangga, Surabaya, INDONESIA
4
Institute of Tropical Disease, Universitas Airlangga, INDONESIA
5
Department of Biostatistics, Epidemiology, and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Bulaksumur Yogyakarta, INDONESIA
Publication date: 2024-05-30
Electron J Gen Med 2024;21(3):em592
KEYWORDS
ABSTRACT
Background:
Diabetic retinopathy (DR) is renowned as a prominent cause of visual impairment worldwide. The
association between manganese superoxide dismutase (MnSOD) gene, Ala16Val (rs4880), and DR susceptibility in
people with type 2 diabetes mellitus (T2DM) remains contentious.
Objective:
This meta-analysis aims to evaluate risk of DR in T2DM patients with MnSOD Ala16Val polymorphism.
Methods:
A literature search was conducted using MEDLINE, Scopus, Web of Science, ScienceDirect, EMBASE, and
grey literature to identify potential studies assessing the link between MnSOD polymorphism and DR risk among
T2DM patients. The data was further analyzed in fixed/random effect models using RevMan 5.3 under five genetic
models.
Results:
Six studies comprising 2,132 subjects from four distinct ethnicities were included. The present study
revealed that MnSOD gene polymorphism was associated with a significantly increasing DR risk in T2DM patients
under the co-dominant model (VV vs. AA) (OR 1.87 [1.42, 2.46], p<0.0001) and dominant model (VV+AV vs. AA) (OR
1.85 [1.02, 3.33], p=0.0400).
Conclusions:
T2DM individuals with rs4880 VV alleles are more susceptible to DR development, making them as a
potential marker for heightened DR susceptibility in T2DM patients, laying the foundation for a gene panel to
assess their susceptibility to develop DR.
REFERENCES (37)
1.
Wang W, Lo ACY. Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816.
https://doi.org/10.3390/ijms19... PMid:29925789 PMCid:PMC6032159.
2.
Saremi L, Taghvaei S, Feizy F, Ghaffari ME, Babaniamansour S, Saltanatpour Z. Association study between superoxide Dismutases gene polymorphisms and development of diabetic retinopathy and cataract in Iranian patients with type two diabetes mellitus. J Diabetes Metab Disord. 2021; 20(1):627-34.
https://doi.org/10.1007/s40200... PMid:34178856 PMCid:PMC8212287.
3.
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, et al. The role of genetic polymorphisms in diabetic retinopathy: Narrative review. Int J Mol Sci. 2023;24(21):15865.
https://doi.org/10.3390/ijms24... PMid:37958858 PMCid:PMC10650381.
4.
Zhang X, Saaddine JB, Chou C-F, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010;304(6):649-56.
https://doi.org/10.1001/jama.2... PMid:20699456 PMCid:PMC2945293.
5.
Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2(14):e93751.
https://doi.org/10.1172/jci.in... PMid:28724805 PMCid:PMC5518557.
6.
Al-Kharashi AS. Role of oxidative stress, inflammation, hypoxia and angiogenesis in the development of diabetic retinopathy. Saudi J Ophthalmol. 2018;32(4):318-23.
https://doi.org/10.1016/j.sjop... PMid:30581303 PMCid:PMC6300752.
7.
Nakanishi S, Yamane K, Ohishi W, et al. Manganese superoxide dismutase Ala16Val polymorphism is associated with the development of type 2 diabetes in Japanese-Americans. Diabetes Res Clin Pract. 2008; 81(3):381-5.
https://doi.org/10.1016/j.diab... PMid:18653258.
8.
Nomiyama T, Tanaka Y, Piao L, et al. The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. J Hum Genet. 2003;48(3):138-41.
https://doi.org/10.1007/s10038... PMid:12624725.
9.
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799.
https://doi.org/10.1016/j.redo... PMid:33248932 PMCid:PMC7767789.
10.
Kanwar M, Chan P-S, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: Possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci. 2007;48(8):3805-11.
https://doi.org/10.1167/iovs.0... PMid:17652755.
11.
Kowluru RA, Atasi L, Ho Y-S. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2006;47(4):1594-9.
https://doi.org/10.1167/iovs.0... PMid:16565397.
12.
Pourvali K, Abbasi M, Mottaghi A. Role of superoxide dismutase 2 gene Ala16Val polymorphism and total antioxidant capacity in diabetes and its complications. Avicenna J Med Biotechnol. 2016;8(2):48-56. PMid:27141263.
13.
Santos JM, Tewari S, Goldberg AFX, Kowluru RA. Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic Biol Med. 2011;51(10):1849-60.
https://doi.org/10.1016/j.free... PMid:21911054 PMCid:PMC3202722.
14.
Madsen-Bouterse SA, Zhong Q, Mohammad G, Ho Y-S, Kowluru RA. Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic Res. 2010;44(3):313-21.
https://doi.org/10.3109/107157... PMid:20088710 PMCid:PMC3025400.
15.
Kowluru RA, Kanwar M. Oxidative stress and the development of diabetic retinopathy: Contributory role of matrix metalloproteinase-2. Free Radic Biol Med. 2009;46(12):1677-85.
https://doi.org/10.1016/j.free... PMid:19345729 PMCid:PMC2683342.
16.
Kakko S, Päivänsalo M, Koistinen P, Kesäniemi YA, Kinnula VL, Savolainen MJ. The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis. 2003;168(1):147-52.
https://doi.org/10.1016/S0021-... PMid:12732398.
17.
Yamakura F, Kawasak H. Post-translational modifications of superoxide dismutase. Biochim Biophys Acta. 2010;1804(2):318-25.
https://doi.org/10.1016/j.bbap... PMid:19837190.
18.
Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at:
https://www.ohri.ca/programs/c... (Accessed: 10 January 2024).
19.
Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. Cochrane; 2021.
20.
Haghighi SF, Salehi Z, Sabouri MR, Abbasi N. [Polymorphic variant of MnSOD A16V and risk of diabetic retinopathy]. Mol Biol (Mosk). 2015;49(1):114-8.
https://doi.org/10.7868/S00268... PMid:25916115.
21.
Petrovič MG, Cilenšek I, Petrovič D. Manganese superoxide dismutase gene polymorphism (V16A) is associated with diabetic retinopathy in Slovene (Caucasians) type 2 diabetes patients. Dis Markers. 2008;24(1):59-64.
https://doi.org/10.1155/2008/9... PMid:18057537 PMCid:PMC3850621.
22.
Vanita V. Association of RAGE (p.Gly82Ser) and MnSOD (p.Val16Ala) polymorphisms with diabetic retinopathy in T2DM patients from north India. Diabetes Res Clin Pract. 2014;104(1):155-62.
https://doi.org/10.1016/j.diab... PMid:24529564.
23.
Lee SJ, Choi MG, Kim D-S, Kim TW. Manganese superoxide dismutase gene polymorphism (V16A) is associated with stages of albuminuria in Korean type 2 diabetic patients. Metabolism. 2006;55(1):1-7.
https://doi.org/10.1016/j.meta... PMid:16324912.
24.
Ye L-X, Yang M-P, Qiu H, Guo K-Q, Yan J-S. [Association of the polymorphism in manganese superoxide dismutase gene with diabetic retinopathy in Chinese type 2 diabetic patients]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2008;25(4):452-4.
25.
Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet. 2008;9:30.
https://doi.org/10.1186/1471-2... PMid:18423055 PMCid:PMC2386118.
26.
Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus. Redox Biol. 2014; 2:170-7.
https://doi.org/10.1016/j.redo... PMid:25460725 PMCid:PMC4297945.
27.
Sutton A, Imbert A, Igoudjil A, et al. The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics. 2005;15(5):311-9.
https://doi.org/10.1097/012130... PMid:15864132.
28.
Vats P, Sagar N, Singh TP, Banerjee M. Association of superoxide dismutases (SOD1 and SOD2) and glutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus. Free Radic Res. 2014;49(1):17-24.
https://doi.org/10.3109/107157... PMid:25283363.
29.
Bresciani G, Cruz IBM, de Paz JA, Cuevas MJ, González-Gallego J. The MnSOD Ala16Val SNP: Relevance to human diseases and interaction with environmental factors. Free Radic Res. 2013;47(10):781-92.
https://doi.org/10.3109/107157... PMid:23952573.
30.
Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J Clin Med. 2019;8(9):1363.
https://doi.org/10.3390/jcm809... PMid:31480638 PMCid:PMC6780143.
31.
Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes. 2011;60(4):1304-13.
https://doi.org/10.2337/db10-0... PMid:21357467 PMCid:PMC3064104.
32.
Kowluru RA, Santos JM, Mishra M. Epigenetic modifications and diabetic retinopathy. Biomed Res Int. 2013;2013:635284.
https://doi.org/10.1155/2013/6... PMid:24286082 PMCid:PMC3826295.
33.
Kowluru RA, Kowluru A, Mishra M, Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res. 2015;48:40-61.
https://doi.org/10.1016/j.pret... PMid:25975734 PMCid:PMC6697077.
34.
Perrone L, Matrone C, Singh LP. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J Ophthalmol. 2015;2014:789120.
https://doi.org/10.1155/2014/7... PMid:25165577 PMCid:PMC4137538.
35.
Mishra M, Kowluru RA. DNA methylation–A potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy. Mol Neurobiol. 2019;56(1):88-101.
https://doi.org/10.1007/s12035... PMid:29679259.
36.
Guerra-Castellano A, Díaz-Quintana A, Pérez-Mejías G, et al. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci USA. 2018;115(31):7955-60.
https://doi.org/10.1073/pnas.1... PMid:30018060 PMCid:PMC6077723.
37.
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Nrf2-mediated glutamate–cysteine ligase: Implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression. Free Radic Biol Med. 2014;75:129-39.
https://doi.org/10.1016/j.free... PMid:25016074 PMCid:PMC10280282.