ORIGINAL ARTICLE
Carrageenan-amino acid interaction as a tool for understanding atherosclerotic process initiation
More details
Hide details
1
University of Araraquara, Araraquara, SP, BRAZIL
2
College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, BRAZIL
Publication date: 2024-05-30
Electron J Gen Med 2024;21(3):em590
KEYWORDS
ABSTRACT
Atherosclerosis is the primary trigger for severe pathologies. The atherosclerotic inflammatory process is well
known after low-density lipoprotein (LDL) adhesion in blood vessel walls, however, limited information exists
regarding LDL penetration into subendothelial layers. Here, we propose for the first time, to the best of our
knowledge, the pathway for the initial trajectory of the lipid molecules internalization into the arterial endothelial
tissue. The investigation shows a computational model analyzing molecules involved in the atherosclerotic
process, specifically LDL and molecules of the vascular endothelium. The theoretical model was experimentally
tested using carrageenan to simulate the anionic counterparts of vascular tissue and amino acids from
apolipoprotein B-100. The molecular interactions were analyzed by conductimetric titration, FTIR, and rheology.
The computational model identified potential amino acids involved in the process, and the experimental results
demonstrated the interaction between lysine and polymer, as the mechanism of adhesion, confirming the model.
REFERENCES (80)
1.
Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of atherosclerosis. Int J Mol Sci. 2022;23(6):3346.
https://doi.org/10.3390/ijms23... PMid:35328769 PMCid:PMC8954705.
2.
Sumida K, Molnar MZ, Potukuchi PK, et al. Constipation and risk of death and cardiovascular events. Atherosclerosis. 2018;281:114-20.
https://doi.org/10.1016/j.athe... PMid:30658186 PMCid:PMC6399019.
3.
Gimbrone Jr MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620-36.
https://doi.org/10.1161/CIRCRE... PMid:26892962 PMCid:PMC4762052.
4.
Norlund F, Lissåker C, Wallert J, Held C, Olsson EM. Factors associated with emotional distress in patients with myocardial infarction: Results from the SWEDEHEART registry. Eur J Prev Cardiol. 2018;25(9):910-20.
https://doi.org/10.1177/204748... PMid:29692223 PMCid:PMC6009178.
6.
Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852-66.
https://doi.org/10.1161/CIRCRE... PMid:24902970.
7.
Mohanta SK, Yin C, Peng L, et al. Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis. Circ Res. 2014;114(11):1772-87.
https://doi.org/10.1161/CIRCRE... PMid:24855201.
9.
Gargiulo P, Marsico F, Parente A, et al. Ischemic heart disease in systemic inflammatory diseases. An appraisal. Int J Cardiol. 2014;170(3):286-90.
https://doi.org/10.1016/j.ijca... PMid:24331863.
10.
Abdelhamid AS, Brown TJ, Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020;29;3(3):CD003177.
https://doi.org/10.1002/146518... PMid:32114706.
12.
Roth GA, Abate D, Abate KH, GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sexspecific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1736-88.
https://doi.org/10.1016/S0140-... PMid:30496103.
13.
Brant LCC, Nascimento BR, Passos VMA, et al. Variations and particularities in cardiovascular disease mortality in Brazil and Brazilian states in 1990 and 2015: Estimates from the global burden of disease. Rev Bras Epidemiol. 2017;01(01):116-28.
https://doi.org/10.1590/1980-5... PMid:28658377.
15.
Avezum JA, Feldman A, Carvalho ACC, et al. V guideline of the Brazilian Society of Cardiology on acute myocardial infarction treatment with ST segment elevation. Arq Bras Cardiol. 2015;105(2Suppl 1):1-105.
16.
Faria-Fortini I, Basílio ML, Scianni AA, Faria CDCM, Teixeira-Salmela LF. Performance and capacity-based measures of locomotion, compared to impairment-based measures, best predicted participation in individuals with hemiparesis due to stroke. Disabil Rehabil. 2018;40:1791-8.
https://doi.org/10.1080/096382... PMid:28395524.
17.
Tadi P, Lui F. Acute stroke. Treasure Island, FL: StatPearls Publishing; 2024.
18.
Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):344-418.
https://doi.org/10.1161/STR.00... PMid:31662037.
19.
Rolim D, Sampaio S, Dias PG, Almeida P, Lopes JA, Teixeira JF. Mortality after amputation. Journal Angiologia e Cirurgia Vascular. 2015;11(3):166-70.
https://doi.org/10.1016/j.ancv....
20.
Tabas I, Garcia- Cardeña, G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13-22.
https://doi.org/10.1083/jcb.20... PMid:25869663 PMCid:PMC4395483.
21.
Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243-52.
https://doi.org/10.1042/CS2018... PMid:29930142.
22.
Harris WS, Tintle NL, Etherton MR, Vasan RS. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The framingham heart study. J Clin Lipidol. 2018;12(3):718-27.e6.
https://doi.org/10.1016/j.jacl... PMid:29559306 PMCid:PMC6034629.
23.
Wang HH, Garruti G, Liu M, Portincasa P, Wang DQ. Cholesterol and lipoprotein metabolism and atherosclerosis: Recent advances in reverse cholesterol transport. Ann Hepatol. 2017;16(Suppl. 1:s3-105.):s27-42.
https://doi.org/10.5604/01.300... PMid:29080338.
24.
Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. Eur Heart J. 2017;38(32):2459-72.
https://doi.org/10.1093/eurhea... PMid:28444290 PMCid:PMC5837225.
25.
Di Fusco SA, Maggioni AP, Scicchitano P, Zuin M, D’Elia E, Colivicchi F. Lipoprotein (a), inflammation, and atherosclerosis. J Clin Med. 2023;12(7):2529.
https://doi.org/10.3390/jcm120... PMid:37048611 PMCid:PMC10095203.
28.
McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: Novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol. 2014;306(2):H184-196.
https://doi.org/10.1152/ajphea... PMid:24163075 PMCid:PMC3920129.
29.
Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol. 2016;84:1-7.
https://doi.org/10.1016/j.vph.... PMid:27256928.
30.
Dower JI, Geleijnse JM, Gijsbers L, Schalkwijk C, Kromhout D, Hollman PC. Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. J Nutr. 2015; 145(7):1459-63.
https://doi.org/10.3945/jn.115... PMid:25972527.
31.
Rojas J, Salazar J, Martínez MS, et al. Macrophage heterogeneity and plasticity: Impact of macrophage biomarkers on atherosclerosis. Scientifica (Cairo). 2015;2015:851252.
https://doi.org/10.1155/2015/8... PMid:26491604 PMCid:PMC4600540.
32.
Zhu Y, Xian X, Wang Z, et al. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018;8(3):80.
https://doi.org/10.3390/biom80... PMid:30142970 PMCid:PMC6163673.
34.
Hilgendorf I, Swirski FK. Making a difference: Monocyte heterogeneity in cardiovascular disease. Curr Atheroscler Rep. 2012;14(5):450-9.
https://doi.org/10.1007/s11883... PMid:22847772 PMCid:PMC3436972.
35.
Lichtman AH, Binder CJ, Tsimikas S, Witztum JL. Adaptive immunity in atherogenesis: New insights and therapeutic approaches. J Clin Invest. 2013;123(1):27-36.
https://doi.org/10.1172/JCI631... PMid:23281407 PMCid:PMC3533280.
36.
Suzuki J, Hamada E, Shodai T, et al. Cytokine secretion from human monocytes potentiated by p-selectin-mediated cell adhesion. Int Arch Allergy Appl Immunol. 2013; 160(2):152-60.
https://doi.org/10.1159/000339... PMid:23018521.
37.
Paoletti R, Bolego C, Poli A, Cignarella A. Metabolic syndrome, inflammation and atherosclerosis. Vasc Health Risk Manag. 2006;2(2):145-52.
https://doi.org/10.2147/vhrm.2... PMid:17319458 PMCid:PMC1993992.
38.
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: A triumph of simplicity. Curr Opin Lipidol. 2016;27(5):473-83.
https://doi.org/10.1097/MOL.00... PMid:27472409.
39.
Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater. 2014;38:91-104.
https://doi.org/10.1016/j.jmbb... PMid:25043659.
40.
Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771-85. ttps://doi.org/10.1038/nrm3902 PMid:25370693 PMCid:PMC4682873.
41.
Kali A, Shetty KS. Endocan: A novel circulating proteoglycan. Indian J Pharmacol. 2014;46(6):579-83.
https://doi.org/10.4103/0253-7... PMid:25538326 PMCid:PMC4264070.
42.
Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22(6):399-411.
https://doi.org/10.1016/j.hlc.... PMid:23541627.
43.
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today. 2016;21(10):1578-95.
https://doi.org/10.1016/j.drud... PMid:27265770.
44.
Fogelstrand P, Borén J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis. 2012;22(1):1-7.
https://doi.org/10.1016/j.nume... PMid:22176921.
45.
Neufeld EB, Zadrozny LM, Phillips D, Aponte A, Yu ZX, Balaban RS. Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis. 2014;233(1):113-21.
https://doi.org/10.1016/j.athe... PMid:24529131 PMCid:PMC3952492.
46.
Yurdagul A Jr, Finney AC, Woolard MD, Orr AW. The arterial microenvironment: The where and why of atherosclerosis. Biochem J. 2016;473(10):1281-95.
https://doi.org/10.1042/BJ2015... PMid:27208212 PMCid:PMC5410666.
47.
Yang X, Li Y, Ren X, et al. Oxidative stress-mediated atherosclerosis: Mechanisms and therapies. Front Physiol. 2017;8:600.
https://doi.org/10.3389/fphys.... PMid:28878685 PMCid:PMC5572357.
48.
Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol. 2015;179(2):173-87.
https://doi.org/10.1111/cei.12... PMid:25352024 PMCid:PMC4298395.
49.
Yurdagul A Jr, Green J, Albert P, McInnis MC, Mazar AP, Orr AW. α5β1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34(7): 1362-73.
https://doi.org/10.1161/ATVBAH... PMid:24833794 PMCid:PMC4096780.
50.
Mitra S, Deshmukh A, Sachdeva R, Lu J, Mehta JL. Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am J Med Sci. 2011;342(2):135-42.
https://doi.org/10.1097/MAJ.0b... PMid:21747278.
52.
Ziegler T, Abdel Rahman F, Jurisch V, Kupatt C. Atherosclerosis and the capillary network: Pathophysiology and potential therapeutic strategies. Cells. 2019;9(1):50.
https://doi.org/10.3390/cells9... PMid:31878229 PMCid:PMC7016600.
53.
Legein B, Temmerman L, Biessen EA, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013;70(20):3847-69.
https://doi.org/10.1007/s00018... PMid:23430000.
54.
McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog Lipid Res. 2011; 50(4):331-47.
https://doi.org/10.1016/j.plip... PMid:21601592.
55.
Skiba DS, Nosalski R, Mikolajczyk TP, et al. Anti-atherosclerotic effect of the angiotensin 1-7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017;174(22):4055-69.
https://doi.org/10.1111/bph.13... PMid:27935022 PMCid:PMC5659999.
56.
Angelovich TA, Hearps AC, Jaworowski A. Inflammation-induced foam cell formation in chronic inflammatory disease. Immunol Cell Biol. 2015;93(8):683-93.
https://doi.org/10.1038/icb.20... PMid:25753272.
58.
Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118(4):692-702.
https://doi.org/10.1161/CIRCRE... PMid:26892967 PMCid:PMC4762053.
59.
Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J Tissue Eng Regen Med. 2019;13(1):99-109.
https://doi.org/10.1002/term.2... PMid:30445662.
60.
Bao Z, Li L, Geng Y, et al. Advanced glycation end products induce vascular smooth muscle cell-derived foam cell formation and transdifferentiate to a macrophage-like state. Mediators Inflamm. 2020;7;2020:6850187.
https://doi.org/10.1155/2020/6... PMid:32831637 PMCid:PMC7428884.
61.
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol. 2019;112:54-71.
https://doi.org/10.1016/j.vph.... PMid:30115528.
63.
Kemmish H, Fasnacht M, Yan L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS One. 2017;12:e0177923.
https://doi.org/10.1371/journa... PMid:28542300 PMCid:PMC5436848.
64.
Stewart JJP. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. Modeling J Mol. 2013;19(1):1-32.
https://doi.org/10.1007/s00894... PMid:23187683 PMCid:PMC3536963.
65.
Macrae CF, Sovago I, Cottrell SJ, et al. Mercury 4.0: From visualization to analysis, design and prediction. J Appl Cristalizador. 2020;53(1):226-35.
https://doi.org/10.1107/S16005... PMid:32047413 PMCid:PMC6998782.
66.
Ghani NAA, Othaman R, Ahmad A, Anuar FH, Hassan NH. Impact of purification on iota carrageenan as solid polymer electrolyte. Arab J Chem. 2019;12(3):370-6.
https://doi.org/10.1016/j.arab....
67.
Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B Biointerfaces. 2013;1(102):534-9.
https://doi.org/10.1016/j.cols... PMid:23104022.
68.
Bruice PY. Organic chemistry. Upper Saddle River, NJ: Pearson; 2016.
69.
McMurry J, Begley T. The organic chemistry of biological pathways. Greenwood Village, CO: Roberts & Company Publishers; 2015.
70.
Sahaya RAS, Rajendran S. Inhibition of corrosion of carbon steel in well water by DL-phenylalanine-Zn2+system. J Electrochem Sci Eng. 2012;2(2):91-104.
https://doi.org/10.5599/jese.2....
71.
Matsuo I, Kimura-Yoshida C. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis. Philos Trans R Soc Lond B Biol Sci. 2014;369(1657):20130545.
https://doi.org/10.1098/rstb.2... PMid:25349453 PMCid:PMC4216467.
72.
Neill T, Schaefer L, Iozzo RV. Decoding the matrix: Instructive roles of proteoglycan receptors. Biochemistry. 2015;54(30):4583-98.
https://doi.org/10.1021/acs.bi... PMid:26177309 PMCid:PMC4859759.
73.
Błaszak BB, Gozdecka G, Shyichuk A. Carrageenan as a functional additive in the production of cheese and cheese-like products. Acta Sci Pol Technol Aliment. 2018;17(2):107-16.
https://doi.org/10.17306/J.AFS... PMid:29803212.
75.
Zakaria HM, Shah A, Konieczny M, Hoffmann JA, Nijdam AJ, Reeves ME. Small molecule- and amino acid-induced aggregation of gold nanoparticles. Langmuir. 2013;29(25):7661-73.
https://doi.org/10.1021/la4005... PMid:23718319.
76.
Baynes JW. Medical biochemistry. Netherlands: Elsevier; 2010.
77.
Vieira Neto JL, Martins AL, Ataíde CH, Barrozo MAS. Non-Newtonian flows in annuli with variable eccentric motion of the inner tube. Chem Eng Technol. 2012;35(11):1981-8.
https://doi.org/10.1002/ceat.2....
78.
Bi X, Xiong W, He J, Ma S, Zhang J, Fang Y, Wu Y. Site-selective and biocompatible growth of polymers from glycan moieties of glycoproteins and living cells. Biomacromolecules. 2021;22(10):4237-43.
https://doi.org/10.1021/acs.bi... PMid:34474556.
79.
Yan JN, Cui XF, Jiang XY, Li L, Sun W, Wu HT. Complex characterization and mechanism of formation of scallop protein hydrolysates (patinopecten yessoensis)/κ-carrageenan/konjac gum compound gels. J Food Sci. 2022; 87(7):2953-64.
https://doi.org/10.1111/1750-3... PMid:35686600.
80.
Wu CL, Li XY, Huang XY, et al. Mechanism of formation and textural properties of a complex gel based on soy glycinine-chitosan complex coacervates: Effects of pH, heat treatment temperature and centrifugation. Int J Biol Macromol. 2024;262(2):130170.
https://doi.org/10.1016/j.ijbi... PMid:38360225.