ORIGINAL ARTICLE
Clinical and morphological changes of the spleen in COVID-19 patients with and without splenectomy
 
More details
Hide details
1
Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUSSIA
 
2
Institute of Linguistics and Intercultural Communication, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUSSIA
 
3
Department of Basic Sciences, College of Medicine, Ajman University, Ajman, UAE
 
4
Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUSSIA
 
5
Department of Polyclinic Therapy, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, RUSSIA
 
 
Online publication date: 2024-08-10
 
 
Publication date: 2024-09-01
 
 
Electron J Gen Med 2024;21(5):em602
 
KEYWORDS
ABSTRACT
Patients diagnosed with COVID-19 were seen to develop splenic infarction or abscess. This study aims to estimate the incidence of splenic infarction/abscess in COVID-19 patients and to examine the clinical and morphological changes in the infected spleen. In the splenectomy group, 63.5% of patients had an enlarged spleen measuring between 12.1 cm × 5.1 cm and 19.2 cm × 12.2 cm. The incidence of splenic infarction was 36.4%, while the incidence of splenic infarction complicated by abscess was 18.1%. The size of splenic infarcts varied from 3.1 cm × 1.4 cm to 10.2 cm × 4.3 cm. Splenic abscesses were present in 72.3% of patients. Of 596 patients with severe COVID-19, 12 had at least one splenic abscess (2.3%): three patients had multiple splenic abscesses, while the rest had a single abscess pocket. Splenic infarction was found in 116 patients (22.5%), including 6 patients who later developed splenic abscesses.
REFERENCES (45)
1.
Cao TT, Zhang GQ, Pellegrini E, et al. COVID-19 and its effects on the digestive system. World J Gastroenterol. 2021;27(24):3502-15. https://doi.org/10.3748/wjg.v2... PMid:34239265 PMCid:PMC8240057.
 
2.
Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131:110678. https://doi.org/10.1016/j.biop... PMid:32861070 PMCid:PMC7444942.
 
3.
Ma C, Cong Y, Zhang H. COVID-19 and the digestive system. Am J Gastroenterol. 2020;115(7):1003-6. https://doi.org/10.14309/ajg.0... PMid:32618648 PMCid:PMC7273952.
 
4.
Zhong P, Xu J, Yang D, et al. COVID-19-associated gastrointestinal and liver injury: Clinical features and potential mechanisms. Signal Transduct Target Ther. 2020;5(1):256. https://doi.org/10.1038/s41392... PMid:33139693 PMCid:PMC7605138.
 
5.
Peiris S, Mesa H, Aysola A, et al. Pathological findings in organs and tissues of patients with COVID-19: A systematic review. PLoS One. 2021;16(4):e0250708. https://doi.org/10.1371/journa... PMid:33909679 PMCid:PMC8081217.
 
6.
Mitsuyama K, Tsuruta K, Takedatsu H, et al. Clinical features and pathogenic mechanisms of gastrointestinal injury in COVID-19. J Clin Med. 2020;9(11):3630. https://doi.org/10.3390/jcm911... PMid:33187280 PMCid:PMC7696882.
 
7.
Hunt RH, East JE, Lanas A, et al. COVID-19 and gastrointestinal disease: Implications for the gastroenterologist. Dig Dis. 2021;39(2):119-39. https://doi.org/10.1159/000512... PMid:33040064 PMCid:PMC7705947.
 
8.
Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari-Soureshjani R. Fluid and electrolyte disturbances in COVID-19 and their complications. Biomed Res Int. 2021;2021:6667047. https://doi.org/10.1155/2021/6... PMid:33937408 PMCid:PMC8060100.
 
9.
Ghazanfar H, Kandhi S, Shin D, et al. Impact of COVID-19 on the gastrointestinal tract: A clinical review. Cureus. 2022;14(3):e23333. https://doi.org/10.7759/cureus....
 
10.
Mavraganis G, Ioannou S, Kallianos A, Rentziou G, Trakada G. A COVID-19 patient with simultaneous renal infarct, splenic infarct and aortic thrombosis during the severe disease. Healthcare. 2022;10(1):150. https://doi.org/10.3390/health... PMid:35052313 PMCid:PMC8776164.
 
11.
Ghalib N, Pophali P, Chamorro-Pareja N, Jayarangaiah A, Kumar A. Incidental asymptomatic splenic infarct in a COVID-19 patient. Cureus. 2021;13(2):e13065. https://doi.org/10.7759/cureus... PMid:33680607 PMCid:PMC7929543.
 
12.
Mukhametov A, Yerbulekova M, Aitkhozhayeva G, Tuyakova G, Dautkanova D. Effects of ω-3 fatty acids and ratio of ω-3/ω-6 for health promotion and disease prevention. Food Sci Technol. 2022;42:e58321. https://doi.org/10.1590/fst.58....
 
13.
Yildiz E, Satilmis D, Cevik E. Splenic infarction and pulmonary embolism as a rare manifestation of COVID-19. Turk J Emerg Med. 2021;21(4):214-6. https://doi.org/10.4103/2452-2... PMid:34849435 PMCid:PMC8593423.
 
14.
Prentice G, Wilson S, Coupland A, Bicknell S. Complete splenic infarction in association with COVID-19. BMJ Case Rep. 2021;14(12):e246274. https://doi.org/10.1136/bcr-20... PMid:34876448 PMCid:PMC8655515.
 
15.
Al Suwaidi S, Alakasheh BJ, Al-Ozaibi LS. Splenic infarction in a COVID-19 patient without respiratory symptoms. Dubai Med J. 2022;5(1):74-7. https://doi.org/10.1159/000521... PMCid:PMC8805056.
 
16.
Santos Leite Pessoa M, Franco Costa Lima C, Farias Pimentel AC, Godeiro Costa JC, Bezerra Holanda JL. Multisystemic infarctions in COVID-19: Focus on the spleen. Eur J Case Rep Intern Med. 2020;7(7):001747. https://doi.org/10.12890/2020_... PMid:32665933 PMCid:PMC7350952.
 
17.
Arslan G. Celiac artery thrombosis and splenic infarction as a consequence of mild COVID-19 infection: Report of an unusual case. Hamostaseologie. 2022;42(3):193-4. https://doi.org/10.1055/a-1508... PMid:34198348.
 
18.
de Roquetaillade C, Chousterman BG, Tomasoni D, et al. Unusual arterial thrombotic events in COVID-19 patients. Int J Cardiol. 2021;323:281-4. https://doi.org/10.1016/j.ijca... PMid:32918938 PMCid:PMC7481127.
 
19.
Brem FL, Tayef TAA, Rasras H, Mahi OE, Ouafi NE, Zakaria B. Concomitant renal and splenic infarctions in a COVID-19-patient with a catastrophic thrombotic syndrome. Radiol Case Rep. 2022;17(10):4030-3. https://doi.org/10.1016/j.radc... PMid:35999857 PMCid:PMC9389916.
 
20.
Mahmood SN, Dawod YT, Chan CM. Splenic infarction in a postpartum patient with COVID-19. TH Open. 2021;5(1):e81-3. https://doi.org/10.1055/s-0041... PMid:33615124 PMCid:PMC7886598.
 
21.
Shah MD, Sumeh AS, Sheraz M, Kavitha MS, Venmathi Maran BA, Rodrigues KF. A mini-review on the impact of COVID-19 on vital organs. Biomed Pharmacother. 2021;143:112158. https://doi.org/10.1016/j.biop... PMid:34507116 PMCid:PMC8416601.
 
22.
Yang RX, Zheng RD, Fan JG. Etiology and management of liver injury in patients with COVID-19. World J Gastroenterol. 2020;26(32):4753-62. https://doi.org/10.3748/wjg.v2... PMid:32921955 PMCid:PMC7459209.
 
23.
Su S, Shen J, Zhu L, et al. Involvement of digestive system in COVID-19: Manifestations, pathology, management and challenges. Therap Adv Gastroenterol. 2020;13:1756284820934626. https://doi.org/10.1177/175628... PMid:32595762 PMCid:PMC7303511.
 
24.
Sanz Segura P, Arguedas Lázaro Y, Mostacero Tapia S, Cabrera Chaves T, Sebastián Domingo JJ. Involvement of the digestive system in COVID-19. A review. Gastroenterología y Hepatología (English Edition). 2020; 43(8):464-71. https://doi.org/10.1016/j.gast... PMCid:PMC7546318.
 
25.
Shen S, Gong M, Wang G, et al. COVID-19 and gut injury. Nutrients. 2022;14(20):4409. https://doi.org/10.3390/nu1420... PMid:36297092 PMCid:PMC9608818.
 
26.
Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766-73. https://doi.org/10.14309/ajg.0... PMid:32287140 PMCid:PMC7172492.
 
27.
Steiger S, Rossaint J, Zarbock A, Anders HJ. Secondary immunodeficiency related to kidney disease (SIDKD)-definition, unmet need, and mechanisms. J Am Soc Nephrol. 2022;33(2):259-78. https://doi.org/10.1681/ASN.20... PMid:34907031 PMCid:PMC8819985.
 
28.
Tian D, Ye Q. Hepatic complications of COVID-19 and its treatment. J Med Virol. 2020;92(10):1818-24. https://doi.org/10.1002/jmv.26... PMid:32437004 PMCid:PMC7280725.
 
29.
Zhang Y, Chen Y, Meng Z. Immunomodulation for severe COVID-19 pneumonia: The state of the art. Front Immunol. 2020;11:577442. https://doi.org/10.3389/fimmu.... PMid:33240265 PMCid:PMC7680845.
 
30.
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564-81. https://doi.org/10.1111/all.14... PMid:32396996 PMCid:PMC7272948.
 
31.
Boehme AK, Doyle K, Thakur KT, et al. Disorders of consciousness in hospitalized patients with COVID-19: The role of the systemic inflammatory response syndrome. Neurocrit Care. 2022;36(1):89-96. https://doi.org/10.1007/s12028... PMid:34184176 PMCid:PMC8238027.
 
32.
Chu EC, Spaska A, Monov D, Kasatkin M, Stroiteleva N. Examining the correlation between salivary cytokine concentrations and CRP in people experiencing social-cognitive stress. Neurologic Res. 2023;45(2):160-5. https://doi.org/10.1080/016164... PMid:36197085.
 
33.
Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123-30. https://doi.org/10.1080/222217... PMid:32475230 PMCid:PMC7473317.
 
34.
Dhar SK, Vishnupriyan K, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: Results from meta-analysis and regression. Heliyon. 2021;7(2):e06155. https://doi.org/10.1016/j.heli... PMid:33553782 PMCid:PMC7846230.
 
35.
Tomar B, Anders HJ, Desai J, Mulay SR. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells. 2020;9(6):1383. https://doi.org/10.3390/cells9... PMid:32498376 PMCid:PMC7348784.
 
36.
Galanopoulos M, Gkeros F, Doukatas A, et al. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J Gastroenterol. 2020;26(31):4579-88. https://doi.org/10.3748/wjg.v2... PMid:32884218 PMCid:PMC7445869.
 
37.
van Eijk LE, Binkhorst M, Bourgonje AR, et al. COVID-19: Immunopathology, pathophysiological mechanisms, and treatment options. J Pathol. 2021;254(4):307-31. https://doi.org/10.1002/path.5... PMid:33586189 PMCid:PMC8013908.
 
38.
Wu T, Zuo Z, Kang S, et al. Multi-organ dysfunction in patients with COVID-19: A systematic review and meta-analysis. Aging Dis. 2020;11(4):874-94. https://doi.org/10.14336/AD.20... PMid:32765952 PMCid:PMC7390520.
 
39.
Norton EJ, Sheikh N. Splenic infarct due to a patent foramen ovale and paradoxical emboli post-COVID-19 infection: A case study. Cureus. 2021;13(5):e14887. https://doi.org/10.7759/cureus....
 
40.
Trancǎ SD, Antal O, Farcaş AD. Case report: Acute splenic artery thrombosis in a COVID-19, postpartum patient. Front Med. 2021;8:698627. https://doi.org/10.3389/fmed.2... PMid:34805195 PMCid:PMC8604041.
 
41.
Atıcı SD, Akpınar G. Splenic infarct in a COVID-19 patient under anticoagulant therapy with normal D-dimer levels. Int J Surg Case Rep. 2022;92:106847. https://doi.org/10.1016/j.ijsc... PMid:35194547 PMCid:PMC8855613.
 
42.
Rigual R, Ruiz-Ares G, Rodriguez-Pardo J, et al. Concurrent cerebral, splenic, and renal infarction in a patient with COVID-19 infection. Neurologist. 2022;27(3):143-6. https://doi.org/10.1097/NRL.00... PMid:34855656 PMCid:PMC9066505.
 
43.
Hossri S, Shadi M, Hamarsha Z, Schneider R, El-Sayegh D. Clinically significant anticardiolipin antibodies associated with COVID-19. J Crit Care. 2020;59:32-4. https://doi.org/10.1016/j.jcrc... PMid:32512349 PMCid:PMC7256550.
 
44.
Özden H, Abdulkadir SAFA. Isolated spleen infarction in patient with COVID-19. Turk J Sci Health. 2023;4(1):31-4. https://doi.org/10.51972/tfsd.....
 
45.
Hakoshima M, Kitakaze K, Adachi H, Katsuyama H, Yanai H. Clinical, hematological, biochemical and radiological characteristics for patients with splenic infarction: Case series with literature review. J Clin Med Res. 2023;15(1):38-50. https://doi.org/10.14740/jocmr... PMid:36755765 PMCid:PMC9881492.
 
eISSN:2516-3507
Journals System - logo
Scroll to top