ORIGINAL ARTICLE
Complete blood count derived inflammatory biomarkers and the level of anti-SARS-CoV-2 NAb and S-RBD IgG among cancer survivors receiving COVID-19 vaccines
 
More details
Hide details
1
Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Cipto Mangunkusumo General Hospital-Faculty of Medicine Universitas Indonesia, Jakarta, INDONESIA
 
2
Department of Clinical Pathology, Yarsi University, Jakarta, INDONESIA
 
3
Department of Internal Medicine, Dr. Cipto Mangunkusumo General Hospital-Faculty of Medicine Universitas Indonesia, Jakarta, INDONESIA
 
 
Online publication date: 2023-01-19
 
 
Publication date: 2023-03-01
 
 
Electron J Gen Med 2023;20(2):em456
 
KEYWORDS
ABSTRACT
Background:
In the era of coronavirus disease 2019 (COVID-19), it is mandatory to identify vulnerable people with cancers as they have impaired immune system that can lead to high mortality. This study analyzes the complete blood count (CBC) derived inflammatory biomarkers and the level of anti-SARS-CoV-2 neutralizing antibody (NAb) and spike protein’s receptor-binding domain immunoglobulin G (S-RBD IgG) among cancer survivors.

Methods:
A cross-sectional study was conducted in patients with either solid or hematological cancers who had received two-doses of COVID-19 vaccinations within six months.

Results:
From 119 subjects, the COVID-19 vaccines demonstrated laboratory efficacy (median NAb=129.03 AU/mL; median S-RBD IgG=270.53 AU/mL). The seropositive conversion of NAb reached 94.1% and S-RBD IgG reached 93.3%. Additionally, the S-RBD IgG had very weak correlation with absolute monocyte count (R=-0.185; p-value=0.044). The NAb also had very weak correlation with leukocyte (Kendall’s tau-b (τb)=-0.147; p-value=0.019), absolute neutrophil count (τb=-0.126; p-value=0.044), absolute eosinophil count (τb=-0.132; p-value=0.034).

Conclusion:
The seropositivity rate of anti-SARS-CoV-2 NAb and S-RBD IgG were significantly high. However, the CBC derived inflammatory biomarkers had poor correlation with anti-SARS-CoV-2 NAb and S-RBD IgG. Thus, anti-SARS-CoV-2 NAb and S-RBD IgG are currently the only reliable markers for measuring the COVID-19 vaccine efficacy which should be widely accessible.
REFERENCES (48)
1.
Mediu R, Rama A, Puca E. Evaluation of neutrophil-to-lymphocyte ratio and immune response in patients vaccinated with Pfizer-Biontech vaccine. J Infect Dev Ctries. 2022;16(5):745-51. https://doi.org/10.3855/jidc.1... PMid:35656943.
 
2.
Cascella M, Rajnik M, Aleem A, Dulebohn SC, di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls Publishing; 2022. Available at: https://pubmed.ncbi.nlm.nih.go... (Accessed: 16 November 2022).
 
3.
WHO. WHO coronavirus (COVID-19) dashboard. World Health Organization; 2022. Available at: https://covid19.who.int/ (Accessed: 16 November 2022).
 
4.
Fendler A, de Vries EGE, GeurtsvanKessel CH, et al. COVID-19 vaccines in patients with cancer: Immunogenicity, efficacy and safety. Nat Rev Clin Oncol. 2022;19(6):385-401. https://doi.org/10.1038/s41571... PMid:35277694 PMCid:PMC8916486.
 
5.
Avivi I, Balaban R, Shragai T, et al. Humoral response rate and predictors of response to BNT162b2 mRNA COVID19 vaccine in patients with multiple myeloma. Br J Haematol. 2021;195(2):186-93. https://doi.org/10.1111/bjh.17... PMid:34196388 PMCid:PMC8444771.
 
6.
Jin P, Li J, Pan H, Wu Y, Zhu F. Immunological surrogate endpoints of COVID-2019 vaccines: The evidence we have versus the evidence we need. Signal Transduct Target Ther. 2021;6:48. https://doi.org/10.1038/s41392... PMid:33531462 PMCid:PMC7851657.
 
7.
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of neutralizing antibodies and their potential in COVID-19. Vaccines (Basel). 2021;9(12):1376. https://doi.org/10.3390/vaccin... PMid:34960121 PMCid:PMC8706198.
 
8.
Nakayama T. An inflammatory response is essential for the development of adaptive immunity-immunogenicity and immunotoxicity. Vaccine. 2016;34(47):5815-8. https://doi.org/10.1016/j.vacc... PMid:27745952.
 
9.
Van Tilbeurgh M, Lemdani K, Beignon AS, et al. Predictive markers of immunogenicity and efficacy for human vaccines. Vaccines (Basel). 2021;9(6):579. https://doi.org/10.3390/vaccin... PMid:34205932 PMCid:PMC8226531.
 
10.
Palgen JL, Tchitchek N, Elhmouzi-Younes J, et al. Prime and boost vaccination elicit a distinct innate myeloid cell immune response. Sci Rep. 2018;8:3087. https://doi.org/10.1038/s41598... PMid:29449630 PMCid:PMC5814452.
 
11.
Mavinkurve-Groothuis AMC, van der Flier M, Stelma F, van Leer-Buter C, Preijers FW, Hoogerbrugge PM. Absolute lymphocyte count predicts the response to new influenza virus H1N1 vaccination in pediatric cancer patients. Clin Vaccine Immunol. 2013;20(1):118-21. https://doi.org/10.1128/CVI.00... PMid:23175288 PMCid:PMC3535770.
 
12.
Yang AP, Liu J-P, Tao W-Q, Li H-M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504. https://doi.org/10.1016/j.inti... PMid:32304994 PMCid:PMC7152924.
 
13.
Citu C, Gorun F, Motoc A, et al. The predictive role of NLR, d-NLR, MLR, and SIRI in COVID-19 mortality. Diagnostics (Basel). 2022;12(1):122. https://doi.org/10.3390/diagno... PMid:35054289 PMCid:PMC8774862.
 
14.
Damar Cakırca T, Torun A, Cakırca G, Portakal RD. Role of NLR, PLR, ELR and CLR in differentiating COVID-19 patients with and without pneumonia. Int J Clin Pract. 2021;75(11):e14781. https://doi.org/10.1111/ijcp.1... PMCid:PMC8646493.
 
15.
Ng WW-S, Lam S-M, Yan W-W, Shum H-P. NLR, MLR, PLR and RDW to predict outcome and differentiate between viral and bacterial pneumonia in the intensive care unit. Sci Rep. 2022;12:15974. https://doi.org/10.1038/s41598... PMid:36153405 PMCid:PMC9509334.
 
16.
Ghobadi H, Mohammadshahi J, Javaheri N, Fouladi N, Mirzazadeh Y, Aslani MR. Role of leukocytes and systemic inflammation indexes (NLR, PLR, MLP, dNLR, NLPR, AISI, SIR-I, and SII) on admission predicts in-hospital mortality in non-elderly and elderly COVID-19 patients. Front Med (Lausanne). 2022;9:916453. https://doi.org/10.3389/fmed.2... PMid:36059829 PMCid:PMC9434555.
 
17.
Kumarasamy C, Tiwary V, Sunil K, et al. Prognostic utility of platelet-lymphocyte ratio, neutrophil-lymphocyte ratio and monocyte-lymphocyte ratio in head and neck cancers: A detailed PRISMA compliant systematic review and meta-analysis. Cancers (Basel). 2021;13(16):4166. https://doi.org/10.3390/cancer... PMid:34439320 PMCid:PMC8393748.
 
18.
Leng J, Wu F, Zhang L. Prognostic significance of pretreatment neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, or monocyte-to-lymphocyte ratio in endometrial neoplasms: A systematic review and meta-analysis. Front Oncol. 2022;12:734948. https://doi.org/10.3389/fonc.2... PMid:35651788 PMCid:PMC9149577.
 
19.
Li Y-X, Chang J-Y, He M-Y, et al. Neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) predict clinical outcome in patients with stage IIB cervical cancer. J Oncol. 2021;2021:2939162. https://doi.org/10.1155/2021/2... PMid:34539781 PMCid:PMC8443385.
 
20.
Mindray. CL-900i chemiluminescence immunoassay system. 2022. Available at: https://www.mindray.com/en/pro... (Accessed: 16 November 2022).
 
21.
Zahorec R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy. 2021;122(7):474-88. https://doi.org/10.4149/BLL_20... PMid:34161115.
 
22.
Alexander NI. Reference values of neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and mean platelet volume in healthy adults in North Central Nigeria. J Blood Lymph. 2016;6:1. https://doi.org/10.4172/2165-7....
 
23.
Swinscow TDV, Campbell MJ. Statistics at square one. 2022. Available at: http://www.bmj.com/about-bmj/r... (Accessed: 16 November 2022).
 
24.
Jiang R, Dou X, Li M, Wang E, Hu J, Xiong D, et al. Dynamic observation of SARS-CoV-2 IgM, IgG, and neutralizing antibodies in the development of population immunity through COVID-19 vaccination. J Clin Lab Anal. 20222;36(4):e24325. https://doi.org/10.1002/jcla.2....
 
25.
Sadarangani M, Marchant A, Kollmann TR. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat Rev Immunol. 2021;21(8):475-84. https://doi.org/10.1038/s41577... PMid:34211186 PMCid:PMC8246128.
 
26.
Ashmawy R, Hamdy NA, Elhadi YAM, et al. A meta-analysis on the safety and immunogenicity of COVID-19 vaccines. J Prim Care Community Health. 2022;13:215013192210892. https://doi.org/10.1177/215013... PMid:35400233 PMCid:PMC8998390.
 
27.
Pang NYL, Pang ASR, Chow VT, Wang DY. Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Mil Med Res. 2021;8(1):47. https://doi.org/10.1186/s40779... PMid:34465396 PMCid:PMC8405719.
 
28.
Gupta SL, Jaiswal RK. Neutralizing antibody: A savior in the COVID-19 disease. Mol Biol Rep. 2022;49(3):2465-74. https://doi.org/10.1007/s11033... PMid:34988889 PMCid:PMC8731133.
 
29.
Kim YJ, Bae JY, Bae S, et al. Neutralizing antibody responses to SARS-CoV-2 in Korean patients who have recovered from COVID-19. Yonsei Med J. 2021;62(7):584. https://doi.org/10.3349/ymj.20... PMid:34164955 PMCid:PMC8236344.
 
30.
Moosazadeh M, Maleki I, Alizadeh-Navaei R, et al. Normal values of neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio and platelet-to-lymphocyte ratio among Iranian population: Results of Tabari cohort. Caspian J Intern Med. 2019;10(3):320-5.
 
31.
Lee JS, Kim NY, Na SH, Youn YH, Shin CS. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine. 2018;97(26):e11138. https://doi.org/10.1097/MD.000... PMid:29952958 PMCid:PMC6039688.
 
32.
Kweon OJ, Lee MK, Kim HJ, Chung JW, Choi SH, Kim HR. Neutropenia and neutrophil-to-lymphocyte ratio in a healthy Korean population: Race and sex should be considered. Int J Lab Hematol. 2016;38(3):308-18. https://doi.org/10.1111/ijlh.1... PMid:27018397.
 
33.
Kabat GC, Kim MY, Manson JE, et al. White blood cell count and total and cause-specific mortality in the women’s health initiative. Am J Epidemiol. 2017;186(1):63-72. https://doi.org/10.1093/aje/kw... PMid:28369251 PMCid:PMC5860271.
 
34.
Hachim IY, Hachim MY, Hannawi H, Naeem K bin, Salah A, Hannawi S. The inflammatory biomarkers profile of hospitalized patients with COVID-19 and its association with patient’s outcome: A single centered study. PLoS One. 2021;16(12):e0260537. https://doi.org/10.1371/journa... PMid:34855832 PMCid:PMC8638892.
 
35.
Trujillo-Santos J, Micco P, Iannuzzo M, et al. Elevated white blood cell count and outcome in cancer patients with venous thromboembolism. Thromb Haemost. 2008;100(05):905-11. https://doi.org/10.1160/TH08-0... PMid:18989537.
 
36.
Brochot E, Demey B, Touzé A, et al. Anti-spike, anti-nucleocapsid and neutralizing antibodies in SARS-CoV-2 inpatients and asymptomatic individuals. Front Microbiol. 2020;11:584251. https://doi.org/10.3389/fmicb.... PMid:33193227 PMCid:PMC7604306.
 
37.
Tchalla EYI, Bhalla M, Wohlfert EA, Bou Ghanem EN. Neutrophils are required during immunization with the pneumococcal conjugate vaccine for protective antibody responses and host defense against infection. J Infect Dis. 2020;222(8):1363-70.https://doi.org/10.1093/infdis... PMid:32391562 PMCid:PMC7488200.
 
38.
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A detailed overview of immune escape, antibody escape, partial vaccine escape of SARS-CoV-2 and their emerging variants with escape mutations. Front Immunol. 2022;13:801522. https://doi.org/10.3389/fimmu.... PMid:35222380 PMCid:PMC8863680.
 
39.
Nakayama T, Kashiwagi Y, Kawashima H, Kumagai T, Ishii KJ, Ihara T. Alum-adjuvanted H5N1 whole virion inactivated vaccine (WIV) enhanced inflammatory cytokine productions. Vaccine. 2012;30(26):3885-90. https://doi.org/10.1016/j.vacc... PMid:22507655.
 
40.
Simon HU, Karaulov AV, Bachmann MF. Strategies to prevent SARS-CoV-2-mediated eosinophilic disease in association with COVID-19 vaccination and infection. Int Arch Allergy Immunol. 2020;181(8):624-8. https://doi.org/10.1159/000509... PMid:32544911 PMCid:PMC7360494.
 
41.
Zhou Q, Su S, You W, Wang T, Ren T, Zhu L. Systemic inflammation response index as a prognostic marker in cancer patients: A systematic review and meta-analysis of 38 cohorts. Dose Response. 2021;19(4):155932582110647. https://doi.org/10.1177/155932... PMid:34987341 PMCid:PMC8689621.
 
42.
Kumarasamy C, Sabarimurugan S, Madurantakam RM, et al. Prognostic significance of blood inflammatory biomarkers NLR, PLR, and LMR in cancer–A protocol for systematic review and meta-analysis. Medicine. 2019;98(24):e14834. https://doi.org/10.1097/MD.000... PMid:31192906 PMCid:PMC6587598.
 
43.
Tran S, Truong TH, Narendran A. Evaluation of COVID-19 vaccine response in patients with cancer: An interim analysis. Eur J Cancer. 2021;159:259-74. https://doi.org/10.1016/j.ejca... PMid:34798454 PMCid:PMC8542448.
 
44.
Robilotti EV, Babady NE, Mead PA, et al. Determinants of COVID-19 disease severity in patients with cancer. Nat Med. 2020;26(8):1218-23. https://doi.org/10.1038/s41591... PMid:32581323 PMCid:PMC7785283.
 
45.
Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: A retrospective, multicentre, cohort study. Lancet Haematol. 2020;7(10):e737-45.
 
46.
Gozalbo-Rovira R, Gimenez E, Latorre V, et al. SARS-CoV-2 antibodies, serum inflammatory biomarkers and clinical severity of hospitalized COVID-19 patients. J Clin Virol. 2020;131:104611.https://doi.org/10.1016/j.jcv.... PMid:32882666 PMCid:PMC7459327.
 
47.
Gyang TV, Evans JP, Miller JS, et al. Neutralizing antibody responses against SARS-CoV-2 in vaccinated people with multiple sclerosis. Mult Scler J Exp Transl Clin. 2022;8(1):205521732210873. https://doi.org/10.1177/205521... PMid:35342640 PMCid:PMC8941285.
 
48.
Zhang J, Xing S, Liang D, et al. Differential antibody response to inactivated COVID-19 vaccines in healthy subjects. Front Cell Infect Microbiol. 2021;11:791660. https://doi.org/10.3389/fcimb.... PMid:34976867 PMCid:PMC8716725.
 
eISSN:2516-3507
Journals System - logo
Scroll to top