ORIGINAL ARTICLE
Corrected QT interval and QT dispersion in temporal lobe epilepsy in children and adolescent
More details
Hide details
1
Department of Pediatrics, Faculty of Medicine, Al-Azhar University, Cairo, EGYPT
2
Department of Pediatrics and Neonatology, Faculty of Medicine, Al-Azhar University-Assiut, Al Wilidiyyah, EGYPT
3
Department of Cardiology, Faculty of Medicine, Al-Azhar University, Cairo, EGYPT
Publication date: 2024-07-09
Electron J Gen Med 2024;21(4):em598
KEYWORDS
ABSTRACT
Aim:
The purpose of this research was to contrast (heart-rate corrected QT interval) QTc, and (QT dispersion) QTd
intervals in individuals with (temporal lobe epilepsy) TLE and those without TLE using a standard 12-lead
electrocardiogram.
Patients & methods:
This cross-sectional research was undertaken on 100 cases aged 10 to 20 diagnosed with
epilepsy in accordance with 2017 ILAE criteria. The patients’ informed written permission was acquired. In our
study, we included 100 cases: 50 with TLE and 50 with non-TLE verified by seizure semiology. All patients were
subjected to a comprehensive history, clinical examination (heart rate, pulse, and blood pressure), and clinical
evaluation, which included a comprehensive epilepsy history. On the basis of neurology service documents or the
initial publication of the international classification of diseases, 9th revision (ICD9) diagnostic or 10th revision
(ICD10) codes for epilepsy, diagnostic age for epilepsy was calculated.
Results:
The mean QT interval in group I was 418.30±25.48 ms while that of group II was 406.20±27.63 ms, the
mean QTc of group I was 513.60±61.94 ms and was 488.70±50.65 in group II. The calculated QTd was with a mean
of 57.60±25.05 ms while that of group II was 43.60±31.89 ms. It means that the QT interval, QTc, and QTd values
were considerably greater in the group I (temporal epilepsy) contrasted with group II (non-temporal epilepsy);
(p=0.025, 0.030, and 0.016, respectively). The mean QT, QTc, and QTd values for FE were 409.20±20.80,
500.70±55.60, and 52.60±29.70 ms, respectively. QT, QTc, and QTd mean values for patients with widespread
epilepsy were 412.00±25.60, 505.00±68.60, and 46.20±28.70 ms. QT, QTc, and QTd interval were insignificantly
different between focal and generalized epilepsy. The longer an illness progresses, the longer the QT and QTc
intervals, as there was a substantial positive correlation among illness’s course and QT interval (r=0.391, p<0.001)
and QTc interval (r=0.289, p=0.011), but there was no noticeable impact on QTd due to the illness’s duration, as
we found an insignificant correlation among duration of illness and QTC and QTd.
Conclusions:
Our findings indicate that; QTc interval and QTd are longer in epilepsy cases more among TLE cases
contrasted with non-TLE. Since there was no distinction among different epilepsy types (focal and generalized).
REFERENCES (49)
1.
Teran FA, Bravo E, Richerson GB. Sudden unexpected death in epilepsy: Respiratory mechanisms. Handb Clin Neurol. 2022;189:153-76.
https://doi.org/10.1016/B978-0... PMid:36031303 PMCid:PMC10191258.
2.
O’Neal TB, Shrestha S, Singh H, et al. Sudden unexpected death in epilepsy. Neurol Int. 2022;14(3):600-13.
https://doi.org/10.3390/neurol... PMid:35893283 PMCid:PMC9326725.
3.
Wojewodka G, Gulliford MC, Ashworth M, Richardson MP, Ridsdale L. Epilepsy and mortality: A retrospective cohort analysis with a nested case-control study identifying causes and risk factors from primary care and linkage-derived data. BMJ Open. 2021;11(10):e052841.
https://doi.org/10.1136/bmjope... PMid:34697121 PMCid:PMC8547505.
4.
Dhaibar H, Gautier NM, Chernyshev OY, Dominic P, Glasscock E. Cardiorespiratory profiling reveals primary breathing dysfunction in Kcna1-null mice: Implications for sudden unexpected death in epilepsy. Neurobiol Dis. 2019; 127:502-11.
https://doi.org/10.1016/j.nbd.... PMid:30974168 PMCid:PMC6588471.
5.
Shlobin NA, Sander JW. Reducing sudden unexpected death in epilepsy: Considering risk factors, pathophysiology and strategies. Curr Treat Options Neurol. 2021;23:38.
https://doi.org/10.1007/s11940....
6.
Dono F, Evangelista G, Frazzini V, et al. Interictal heart rate variability analysis reveals lateralization of cardiac autonomic control in temporal lobe epilepsy. Front Neurol. 2020;11:842.
https://doi.org/10.3389/fneur.... PMid:32922353 PMCid:PMC7456848.
7.
Billeci L, Marino D, Insana L, Vatti G, Varanini M. Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. PLoS One. 2018;13(9):e0204339.
https://doi.org/10.1371/journa... PMid:30252915 PMCid:PMC6155519.
8.
Nass RD, Hampel KG, Elger CE, Surges R. Blood pressure in seizures and epilepsy. Front Neurol. 2019;10:501.
https://doi.org/10.3389/fneur.... PMid:31139142 PMCid:PMC6527757.
9.
Tatum WO, Mani J, Jin K, et al. Minimum standards for inpatient long-term video-EEG monitoring: A clinical practice guideline of the international league against epilepsy and international federation of clinical neurophysiology. Clin Neurophysiol. 2022;134:111-28.
https://doi.org/10.1016/j.clin... PMid:34955428.
10.
Vorderwülbecke BJ, Wandschneider B, Weber Y, Holtkamp M. Genetic generalized epilepsies in adults–Challenging assumptions and dogmas. Nat Rev Neurol. 2022;18(2):71-83.
https://doi.org/10.1038/s41582... PMid:34837042.
11.
Shmuely S, van der Lende M, Lamberts RJ, Sander JW, Thijs RD. The heart of epilepsy: Current views and future concepts. Seizure. 2017;44:176-83.
https://doi.org/10.1016/j.seiz... PMid:27843098.
12.
Suna N, Suna I, Gutmane E, et al. Electrocardiographic abnormalities and mortality in epilepsy patients. Medicina (Kaunas). 2021;57(5):504.
https://doi.org/10.3390/medici... PMid:34065703 PMCid:PMC8156797.
13.
Mohebi R, Jehan A, Grober A, Froelicher V. Percentile categorization of QT interval as an approach for identifying adult patients at risk for cardiovascular death. Heart Rhythm. 2017;14(8):1210-6.
https://doi.org/10.1016/j.hrth... PMid:28495651.
14.
Lamberts RJ, Blom MT, Novy J, et al. Increased prevalence of ECG markers for sudden cardiac arrest in refractory epilepsy. J Neurol Neurosurg Psychiatry. 2015;86(3):309-13.
https://doi.org/10.1136/jnnp-2... PMid:24946773 PMCid:PMC4345521.
15.
Sadrnia S, Yousefi P, Jalali L. Correlation between seizure in children and prolonged QT interval. ARYA Atheroscler. 2013;9(1):7-10.
16.
Faria MT, Rodrigues S, Campelo M, et al. Does the type of seizure influence heart rate variability changes? Epilepsy Behav. 2022;126:108453.
https://doi.org/10.1016/j.yebe... PMid:34864377.
17.
Ali W, Bubolz BA, Nguyen L, et al. Epilepsy is associated with ventricular alterations following convulsive status epilepticus in children. Epilepsia Open. 2017;2(4):432-40.
https://doi.org/10.1002/epi4.1... PMid:29430560 PMCid:PMC5800777.
18.
Schreiber JM, Frank LH, Kroner BL, Bumbut A, Ismail MO, Gaillard WD. Children with refractory epilepsy demonstrate alterations in myocardial strain. Epilepsia. 2020;61(10):2234-43.
https://doi.org/10.1111/epi.16... PMid:33053223 PMCid:PMC8191539.
19.
Asoglu R, Ozdemir M, Aladag N, Asoglu E. Evaluation of cardiac repolarization indices in epilepsy patients treated with carbamazepine and valproic acid. Medicina (Kaunas). 2020;56(1):20.
https://doi.org/10.3390/medici... PMid:31935975 PMCid:PMC7022319.
20.
Aulická Š. Current management of generalized convulsive status epilepticus in children. Children (Basel). 2022;9(10):1586.
https://doi.org/10.3390/childr... PMid:36291522 PMCid:PMC9600522.
21.
Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):522-30.
https://doi.org/10.1111/epi.13... PMid:28276060.
22.
Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51(6):1069-77.
https://doi.org/10.1111/j.1528... PMid:19889013.
23.
Christensen PK, Gall MA, Major-Pedersen A, et al. QTc interval length and QT dispersion as predictors of mortality in patients with non-insulin-dependent diabetes. Scand J Clin Lab Invest. 2000;60(4):323-32.
https://doi.org/10.1080/003655... PMid:10943602.
24.
Li H, Li H, Song Y, et al. High voltage J-waves as a predictor of death in acute ST-segment elevated myocardial infarction in hospital. Cardiol Plus. 2019;4(1):10-4.
https://doi.org/10.4103/cp.cp_....
25.
Asadollahi M, Shahidi M, Ramezani M, Sheibani M. Interictal electrocardiographic alternations in patients with drug-resistant epilepsy. Seizure. 2019;69:7-10.
https://doi.org/10.1016/j.seiz... PMid:30952092.
26.
Mori S, Hori A, Turker I, et al. Abnormal cardiac repolarization after seizure episodes in structural brain diseases: Cardiac manifestation of electrical remodeling in the brain? J Am Heart Assoc. 2021;10(9):e019778.
https://doi.org/10.1161/JAHA.1... PMid:33899505 PMCid:PMC8200721.
28.
Ballendine S, Shahab I, Perez-Careta M, et al. Resolution of ictal bradycardia and asystole following temporal lobectomy: A case report, and review of available cases using pacemakers. Epilepsy Behav Rep. 2019;12:100333.
https://doi.org/10.1016/j.ebr.... PMid:31453568 PMCid:PMC6700408.
29.
Seyal M, Bateman LM, Li CS. Impact of periictal interventions on respiratory dysfunction, postictal EEG suppression, and postictal immobility. Epilepsia. 2013;54(2):377-82.
https://doi.org/10.1111/j.1528... PMid:23016848 PMCid:PMC3535512.
30.
Semmelroch M, Elwes RD, Lozsadi DA, Nashef L. Retrospective audit of postictal generalized EEG suppression in telemetry. Epilepsia. 2012;53(2):e21-4.
https://doi.org/10.1111/j.1528... PMid:22050242.
31.
Mazzola L, Rheims S. Ictal and interictal cardiac manifestations in epilepsy. A review of their relation with an altered central control of autonomic functions and with the risk of SUDEP. Front Neurol. 2021;12:642645.
https://doi.org/10.3389/fneur.... PMid:33776894 PMCid:PMC7994524.
32.
Monitillo F, Leone M, Rizzo C, Passantino A, Iacoviello M. Ventricular repolarization measures for arrhythmic risk stratification. World J Cardiol. 2016;8(1):57-73.
https://doi.org/10.4330/wjc.v8... PMid:26839657 PMCid:PMC4728107.
33.
Akyuz E, Polat K, Ates S, et al. Investigating cardiac morphological alterations in a pentylenetetrazol-kindling model of epilepsy. Diagnostics (Basel). 2020;10(6):388.
https://doi.org/10.3390/diagno... PMid:32526953 PMCid:PMC7344915.
34.
Dagar S, Emektar E, Corbacioglu SK, Demirci OL, Tandogan M, Cevik Y. Evaluation of electrocardiographic parameters in patients with epileptic seizure. Acta Neurol Belg. 2020; 120(2):321-7.
https://doi.org/10.1007/s13760... PMid:31297670.
35.
Brotherstone R, Blackhall B, McLellan A. Lengthening of corrected QT during epileptic seizures. Epilepsia. 2010;51(2):221-32.
https://doi.org/10.1111/j.1528... PMid:19732135.
36.
Li MCH, O’Brien TJ, Todaro M, Powell KL. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia. 2019;60(9):1753-67.
https://doi.org/10.1111/epi.16... PMid:31353444.
37.
Mańka-Gaca I, Łabuz-Roszak B, Machowska-Majchrzak A, et al. Association between electrocardiographic and electroencephalographic changes in patients with epilepsy. Arch Med Sci. 2020;16(6):1472-3.
https://doi.org/10.5114/aoms.2... PMid:33224352 PMCid:PMC7667441.
38.
Chan SW, Dervan LA, Watson RS, Anderson AE, Lai YC. Epilepsy duration is an independent factor for electrocardiographic changes in pediatric epilepsy. Epilepsia Open. 2021;6(3):588-96.
https://doi.org/10.1002/epi4.1... PMid:34235879 PMCid:PMC8408606.
39.
Nasef MS, Gaber AA, Abdelhamid YA, Bastawy I, Abdelhady ST, Wahid El Din MM. Corrected QT interval and QT dispersion in temporal lobe epilepsy. Egypt J Neurol Psychiatry Neurosurg. 2021;57:6.
https://doi.org/10.1186/s41983....
40.
Lyu SY, Nam SO, Lee YJ, et al. Longitudinal change of cardiac electrical and autonomic function and potential risk factors in children with dravet syndrome. Epilepsy Res. 2019;152:11-7.
https://doi.org/10.1016/j.eple... PMid:30870727.
41.
Lotufo PA, Valiengo L, Benseñor IM, Brunoni AR. A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia. 2012;53(2):272-82.
https://doi.org/10.1111/j.1528... PMid:22221253.
42.
Fialho GL, Wolf P, Walz R, Lin K. Increased cardiac stiffness is associated with autonomic dysfunction in patients with temporal lobe epilepsy. Epilepsia. 2018;59(6):e85-90.
https://doi.org/10.1111/epi.14... PMid:29697139.
43.
Brewster AL, Marzec K, Hairston A, Ho M, Anderson AE, Lai YC. Early cardiac electrographic and molecular remodeling in a model of status epilepticus and acquired epilepsy. Epilepsia. 2016;57(11):1907-15.
https://doi.org/10.1111/epi.13... PMid:27555091 PMCid:PMC5545890.
44.
Lai YC, Li N, Lawrence W, et al. Myocardial remodeling and susceptibility to ventricular tachycardia in a model of chronic epilepsy. Epilepsia Open. 2018;3(2):213-23.
https://doi.org/10.1002/epi4.1... PMid:29881800 PMCid:PMC5983128.
45.
Lathers CM, Schraeder PL, Weiner FL. Synchronization of cardiac autonomic neural discharge with epileptogenic activity: The lockstep phenomenon. Electroencephalogr Clin Neurophysiol. 1987;67(3):247-59.
https://doi.org/10.1016/0013-4... PMid:2441959.
46.
Thijs RD, Ryvlin P, Surges R. Autonomic manifestations of epilepsy: Emerging pathways to sudden death? Nat Rev Neurol. 2021;17(12):774-88.
https://doi.org/10.1038/s41582... PMid:34716432.
47.
Manolis TA, Manolis AA, Melita H, Manolis AS. Sudden unexpected death in epilepsy: The neuro-cardio-respiratory connection. Seizure. 2019;64:65-73.
https://doi.org/10.1016/j.seiz... PMid:30566897.
48.
Wang R, Wang M, He S, Sun G, Sun X. Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: An overview of regulatory mechanisms and therapeutic reagents. Front Pharmacol. 2020;11:872.
https://doi.org/10.3389/fphar.... PMid:32581817 PMCid:PMC7296066.
49.
Gurses AA, Genc E, Gurses KM, Altiparmak T, Yildirim I, Genc BO. QT interval alterations in epilepsy: A thorough investigation between epilepsy subtypes. J Clin Neurosci. 2022;104:113-7.
https://doi.org/10.1016/j.jocn... PMid:36027652.