ORIGINAL ARTICLE
Effect of newly detected hyperglycemia on the course of coronary heart disease
More details
Hide details
1
Department of Polyclinical Therapy of the N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, RUSSIA
2
Department of Therapy, General Practice and Nuclear Medicine, Pirogov Russian National Research Medical University, Moscow, RUSSIA
Online publication date: 2023-04-12
Publication date: 2023-07-01
Electron J Gen Med 2023;20(4):em496
KEYWORDS
ABSTRACT
Mechanisms and causes of hyperglycemia (HG) during coronary heart disease (CHD), particularly in its unstable forms, remain not fully investigated. The study aimed to determine the effect of newly detected HG on the course of CHD and examine the features of carbohydrate metabolism in patients with CHD. The study was conducted in Moscow (Russia) in 2018-2021. A total of 139 patients with CHD aged 43 to 79 years were examined. All participants were divided into comparison groups, including 34 patients with average glucose levels, 28 patients with fasting HG, 46 patients with impaired glucose tolerance (IGT), and 31 patients with newly diagnosed type 2 diabetes. The range of laboratory examinations included general clinical tests of blood and urine, determination of blood urea, creatinine, C-reactive protein, bilirubin and its fractions, the activity of hepatic transaminases, the study of carbohydrate metabolism, lipidogram, ionogram, and coagulogram. First-time diagnosed HG was a fairly frequent diagnosis in CHD patients (in 105 (75.5%) of 139 patients examined). IGT and type 2 diabetes mellitus recently detected in CHD patients have common disease-causing factors: insulin resistance, lipid metabolism disorders, and sympathetic nervous system activation against the background of reduced parasympathetic effects. All of this should be considered in developing treatment regimens for CHD patients and controlling risk factors.
REFERENCES (40)
1.
Writing Group Members, Mozaffarian D, Benjamin EJ, et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation. 2016;133(4):e38-360.
https://doi.org/10.1161/CIR.00....
2.
Visseren FL, Mach F, Smulders YM, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227-337.
https://doi.org/10.1093/eurhea... PMid:34458905.
3.
Khan MA, Hashim MJ, Mustafa H, et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus. 2020;12(7):e9349.
https://doi.org/10.7759/cureus....
4.
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25.
https://doi.org/10.1016/j.jacc... PMid:28527533 PMCid:PMC5491406.
6.
Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256.
https://doi.org/10.21037/atm.2... PMid:27500157 PMCid:PMC4958723.
7.
Shao C, Wang J, Tian J, Tang YD. Coronary artery disease: From mechanism to clinical practice. In: Wang M, editor. Coronary artery disease: Therapeutics and drug discovery. advances in experimental medicine and biology. Singapore: Springer; 2020. pp. 1-36.
https://doi.org/10.1007/978-98... PMid:32246442.
8.
Batty GD, Kivimäki M, Bell S. Comparison of risk factors for coronary heart disease morbidity versus mortality. Eur J Prev Cardiol. 2020;27(19):2232-4.
https://doi.org/10.1177/204748... PMid:31619085.
9.
Humphries SE, Cooper JA, Capps N, et al. Coronary heart disease mortality in severe vs. non-severe familial hypercholesterolaemia in the Simon Broome Register. Atherosclerosis. 2018;281:207-12.
https://doi.org/10.1016/j.athe... PMid:30458964 PMCid:PMC6403443.
10.
Katta N, Loethen T, Lavie CJ, Alpert MA. Obesity and coronary heart disease: Epidemiology, pathology, and coronary artery imaging. Curr Probl Cardiol. 2021;46(3): 100655.
https://doi.org/10.1016/j.cpca... PMid:32843206.
11.
Hessel FP. Overview of the socio-economic consequences of heart failure. Cardiovasc Diagn Ther. 2021;11(1):254-62.
https://doi.org/10.21037/cdt-2... PMid:33708497 PMCid:PMC7944217.
12.
Wilmot KA, O’Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary heart disease mortality declines in the United States from 1979 through 2011: Evidence for stagnation in young adults, especially women. Circulation. 2015;132(11): 997-1002.
https://doi.org/10.1161/CIRCUL... PMid:26302759 PMCid:PMC4828724.
13.
King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): Clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 1999;48(5):643-8.
https://doi.org/10.1046/j.1365... PMid:10594464 PMCid:PMC2014359.
14.
Paolisso P, Foà A, Bergamaschi L, et al. Hyperglycemia, inflammatory response and infarct size in obstructive acute myocardial infarction and MINOCA. Cardiovasc Diabetol. 2021;20(1):33.
https://doi.org/10.1186/s12933... PMid:33530978 PMCid:PMC7856791.
15.
Paolisso P, Foà A, Bergamaschi L, et al. Impact of admission hyperglycemia on short and long-term prognosis in acute myocardial infarction: MINOCA versus MIOCA. Cardiovasc Diabetol. 2021;20(1):192.
https://doi.org/10.1186/s12933... PMid:34560876 PMCid:PMC8464114.
16.
13 Morbach C, Wagner M, Güntner S, et al. Heart failure in patients with coronary heart disease: Prevalence, characteristics and guideline implementation–Results from the German EuroAspire IV cohort. BMC Cardiovasc Disord. 2017;17(1):1-10.
https://doi.org/10.1186/s12872... PMid:28476146 PMCid:PMC5420109.
17.
Menotti A, Puddu PE, Adachi H, Tolonen H, Kafatos A. Association of serum cholesterol with coronary heart disease mortality during 50-year follow-up in ten cohorts of the seven countries study. Nutr Metab Cardiovasc Dis. 2020;30(8):1337-46.
https://doi.org/10.1016/j.nume... PMid:32507339.
18.
Saito I, Yamagishi K, Kokubo Y, et al. Association of high-density lipoprotein cholesterol concentration with different types of stroke and coronary heart disease: The Japan Public Health Center-based prospective (JPHC) study. Atherosclerosis. 2017;265:147-54.
https://doi.org/10.1016/j.athe... PMid:28888808.
19.
Wadhera RK, Steen DL, Khan I, Giugliano RP, Foody JM. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality. J Clin Lipidol. 2016;10(3):472-89.
https://doi.org/10.1016/j.jacl... PMid:27206934.
20.
Kaski C, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease: Fundamental role of coronary microvascular dysfunction in the pathogenesis of angina pectoris. Circulation. 2018;138(14):1463-80.
https://doi.org/10.1161/CIRCUL... PMid:30354347.
21.
Mageed L. Coronary artery disease: Pathogenesis, progression of atherosclerosis and risk factors. Open J Cardiol Heart Dis. 2018;2(4):1-7.
22.
Severino P, D’Amato A, Pucci M, et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int J Mol Sci. 2020;21(21):8118.
https://doi.org/10.3390/ijms21... PMid:33143256 PMCid:PMC7663258.
23.
Angeli F, Reboldi G, Poltronieri C, et al. Hyperglycemia in acute coronary syndromes: From mechanisms to prognostic implications. Ther Adv Cardiovasc Dis. 2015;9(6):412-24.
https://doi.org/10.1177/175394... PMid:26194489.
24.
Cho YR, Ann SH, Won KB, et al. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep. 2019;9(1):1-7.
https://doi.org/10.1038/s41598... PMid:31477741 PMCid:PMC6718672.
25.
Jenkins DJ, Dehghan M, Mente A, et al. Glycemic index, glycemic load, and cardiovascular disease and mortality. N Engl J Med. 2021;384(14):1312-22.
https://doi.org/10.1056/NEJMoa... PMid:33626252.
26.
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):1-14.
https://doi.org/10.1186/s12933... PMid:30170598 PMCid:PMC6119242.
27.
Petrukhina DA, Pletneva IV, Sysuev BB. Modern medicines (assortment) and trends in the improvement of dosage forms of hepatoprotective agents (review). Drug Dev Regist. 2021;10(3):38-46.
https://doi.org/10.33380/2305-....
28.
Bortnikova VV, Karabaeva VV, Krepkova LV, et al. A retrospective analysis of the clinical studies of a drug flakozid in the treatment of diseases of the hepatobiliary system. Drug Dev Regist. 2021;10:100-4.
https://doi.org/10.33380/2305-....
29.
Meshkovskiy AP, Beregovykh VV, Shestakov VN, et al. Procedure for reviewing pharmaceutical inspections in the Eurasian Economic Union (review). Drug Dev Regist. 2021;10:138-46.
https://doi.org/10.33380/2305-....
30.
Yamagishi SI, Matsui T. Role of hyperglycemia-induced advanced glycation end product (AGE) accumulation in atherosclerosis. Ann Vasc Dis. 2018;11:253-8.
https://doi.org/10.3400/avd.ra... PMid:30402172 PMCid:PMC6200622.
31.
Shahim B, De Bacquer D, De Backer G, et al. The prognostic value of fasting plasma glucose, two-hour postload glucose, and HbA1c in patients with coronary artery disease: A report from EUROASPIRE IV: A survey from the European Society of Cardiology. Diabetes Care. 2017;40(9):1233-40.
https://doi.org/10.2337/dc17-0... PMid:28637653 PMCid:PMC5566283.
32.
Sud M, Wang X, Austin PC, et al. Presentation blood glucose and death, hospitalization, and future diabetes risk in patients with acute heart failure syndromes. Eur Heart J. 2015;36(15):924-31.
https://doi.org/10.1093/eurhea... PMid:25572328 PMCid:PMC6371700.
33.
Ghaffari S, Niafar F, Separham A, Niafar M, Pourafkari L, Nader ND. Association between HbA1c levels with severity of coronary artery disease and short-term outcomes of acute ST-elevation myocardial infarction in nondiabetic patients. Ther Adv Cardiovasc Dis. 2015;9(5):305-13.
https://doi.org/10.1177/175394... PMid:25976908.
34.
Cesaro A, Gragnano F, Paolisso P, et al. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study. Front Cardiovasc Med. 2022;9:1012220.
https://doi.org/10.3389/fcvm.2... PMid:36237914 PMCid:PMC9551177.
35.
Paolisso P, Bergamaschi L, Gragnano, F, et al. Outcomes in diabetic patients treated with SGLT2-Inhibitors with acute myocardial infarction undergoing PCI: The SGLT2-I AMI PROTECT Registry. Pharmacol Res. 2023;187:106597.
https://doi.org/10.1016/j.phrs... PMid:36470546 PMCid:PMC9946774.
36.
Paolisso P, Bergamaschi L, Santulli G, et al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: A multicenter international registry. Cardiovasc Diabetol. 2022;21(1):77.
https://doi.org/10.1186/s12933... PMid:35570280 PMCid:PMC9107763.
37.
Querio G, Antoniotti S, Geddo F, et al. Ischemic heart disease and cardioprotection: Focus on estrogenic hormonal setting and microvascular health. Vasc Pharmacol. 2021;141:106921.
https://doi.org/10.1016/j.vph.... PMid:34592428.
38.
Madonna R, Balistreri CR, De Rosa S, et al. Impact of sex differences and diabetes on coronary atherosclerosis and ischemic heart disease. J Clin Med. 2019;8(1):98.
https://doi.org/10.3390/jcm801... PMid:30654523 PMCid:PMC6351940.
39.
Geng J, Zhang Y, Wang B, Xie J, Xu B, Li J. Glycosylated hemoglobin levels and clinical outcomes in nondiabetic patients with coronary artery disease: A meta-analysis. Medicine. 2017;96(17):e6784.
https://doi.org/10.1097/MD.000... PMid:28445316 PMCid:PMC5413281.
40.
Mossmann M, Wainstein MV, Gonçalves SC, et al. HOMA-IR is associated with significant angiographic coronary artery disease in nondiabetic, nonobese individuals: A cross-sectional study. Diabetol Metab Syndr. 2015;7(1):1-7.
https://doi.org/10.1186/s13098... PMid:26753001 PMCid:PMC4706182.