REVIEW ARTICLE
Endocannabinoid system: An untold story in hypertensive nephropathy
More details
Hide details
1
Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, SAUDI ARABIA
Online publication date: 2023-03-11
Publication date: 2023-05-01
Electron J Gen Med 2023;20(3):em481
KEYWORDS
ABSTRACT
Prognosis of hypertension leads to organ damage by causing nephropathy, stroke, retinopathy and cardiomegaly. Kidney, retinopathy and blood pressure (BP) have been discussed in plenty in relation with catecholamines of autonomic nervous system (ANS) and angiotensin II of renin angiotensin aldosterone system but very little have been told about the role of endocannabinoid system (ECS) in the regulation of kidney function, retinopathy and BP. ECS is a unique system in the body, which can be considered as master regulator of body functions. It encompasses endogenous production of its cannabinoids, its degrading enzymes and functional receptors, which innervate and perform various functions in different organs of the body. Kidney, retinopathy and BP pathologies arise normally due to elevated catecholamine and ang II, which are vasoconstrictor in their biological nature. Question arise which system or agent counterbalances the vasoconstrictors effect of noradrenaline and ang II in normal individuals? This review will not only try to illustrate the significance of ECS in the kidney and BP regulation but also establish the connection of ECS with ANS and ang II. This review will also explain that ECS, which is vasodilator in its action either independently counteract the effect produced with the vasoconstriction of ANS and ang II or by blocking some of the common pathways shared by ECS, ANS, and ang II in the regulation of kidney and BP regulation. This article conclude that persistent control of BP and normal functions of kidney is maintained either by decreasing systemic catecholamine, ang II or by up regulation of ECS, which will result in the regression of nephropathy, stroke, retinopathy, and cardiomegaly induced by hypertension.
REFERENCES (116)
1.
Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S. Endocannabinoid system in neurodegenerative disorders. J Neurochem. 2017;142(5):624-48.
https://doi.org/10.1111/jnc.14... PMid:28608560 PMCid:PMC5669051.
2.
Coutts AA, Izzo AA. The gastrointestinal pharmacology of cannabinoids: An update. Curr Opin Pharmacol. 2004;4(6):572-9.
https://doi.org/10.1016/j.coph... PMid:15525546.
3.
Park F, Potukuchi PK, Moradi H, Kovesdy CP. Cannabinoids and the kidney: Effects in health and disease. Am J Physiol Renal Physiol. 2017;313(5):F1124-32.
https://doi.org/10.1152/ajpren... PMid:28747360 PMCid:PMC5792153.
4.
Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16(1):9-29.
https://doi.org/10.1038/s41582... PMid:31831863.
5.
Puhl SL. Cannabinoid-sensitive receptors in cardiac physiology and ischaemia. Biochim Biophys Acta Mol Cell Res. 2020;1867(3):118462.
https://doi.org/10.1016/j.bbam... PMid:30890410.
7.
Maida V, Daeninck PJ. A user’s guide to cannabinoid therapies in oncology. Curr Oncol. 2016;23(6):398-406.
https://doi.org/10.3747/co.23.... PMid:28050136 PMCid:PMC5176373.
8.
DiPatrizio NV, Piomelli D. The thrifty lipids: Endocannabinoids and the neural control of energy conservation. Trends Neurosci. 2012;35(7):403-11.
https://doi.org/10.1016/j.tins... PMid:22622030 PMCid:PMC3744874.
9.
Long JZ, Li W, Booker L, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37-44.
https://doi.org/10.1038/nchemb... PMid:19029917 PMCid:PMC2605181.
10.
Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9(1):76-81.
https://doi.org/10.1038/nm803 PMid:12461523.
11.
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561-4.
https://doi.org/10.1038/346561... PMid:2165569.
12.
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61-5.
https://doi.org/10.1038/365061... PMid:7689702.
13.
Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J. 2013;280(9):1895-904.
https://doi.org/10.1111/febs.1... PMid:23441874.
14.
Di Marzo V. The endocannabinoid system: Its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacol Res. 2009;60(2):77-84.
https://doi.org/10.1016/j.phrs... PMid:19559360.
15.
Devane WA, Hanuš L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Sci. 1992;258(5090):1946-9.
https://doi.org/10.1126/scienc... PMid:1470919.
16.
Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83-90.
https://doi.org/10.1016/0006-2... PMid:7605349.
17.
Hanuš L, Abu-Lafi S, Fride E, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA. 2001;98(7):3662-5. ttps://doi.org/10.1073/pnas.061029898 PMid:11259648 PMCid:PMC31108.
18.
Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci. 2015;16(1):30-42.
https://doi.org/10.1038/nrn387... PMid:25524120 PMCid:PMC4471876.
19.
Di Marzo V, Piscitelli F. The endocannabinoid system and its modulation by phytocannabinoids. Neurotherapeutics. 2015;12(4):692-8.
https://doi.org/10.1007/s13311... PMid:26271952 PMCid:PMC4604172.
20.
Freund TF, Katona I, Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev. 2003;83(3):1017-66.
https://doi.org/10.1152/physre... PMid:12843414.
21.
Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience. 2007;148(4):1021-32.
https://doi.org/10.1016/j.neur... PMid:17719181 PMCid:PMC2128774.
22.
Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2018;71(6):1269-1324.
https://doi.org/10.1161/HYP.00....
23.
Carey RM, Calhoun DA, Bakris GL, et al. Resistant hypertension: Detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53-90.
24.
Beevers G, Lip GYH, O’Brien E. The pathophysiology of hypertension. BMJ. 2001;322(7291):912-6. ttps://doi.org/10.1136/bmj.322.7291.912 PMid:11302910 PMCid:PMC1120075.
26.
Chen S, Zhang S, Gong Y, et al. The role of the autonomic nervous system in hypertension: A bond graph model study. Physiol Meas. 2008;29(4):473-95.
https://doi.org/10.1088/0967-3... PMid:18401072.
27.
Crowley SD, Gurley SB, Herrera MJ, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103(47):17985-90.
https://doi.org/10.1073/pnas.0... PMid:17090678 PMCid:PMC1693859.
28.
Madhur MS, Lob HE, McCann LA, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55(2):500-7.
https://doi.org/10.1161/HYPERT... PMid:20038749 PMCid:PMC2819301.
29.
Ahmad A, Dempsey SK, Daneva Z, et al. Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci. 2018;19(9):2605.
https://doi.org/10.3390/ijms19... PMid:30177600 PMCid:PMC6164974.
30.
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene. 2016;575(2):584-99. ttps://doi.org/10.1016/j.gene.2015.09.061 PMid:26428312 PMCid:PMC6728140.
31.
Node K, Kitakaze M, Yoshikawa H, Kosaka H, Hori M. Reduced plasma concentrations of nitrogen oxide in individuals with essential hypertension. Hypertension. 1997;30(3):405-8.
https://doi.org/10.1161/01.HYP... PMid:9314424.
32.
Panza JA, Quyyumi AA, Brush Jr JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22-7.
https://doi.org/10.1056/NEJM19... PMid:2355955.
33.
Toczek M, Malinowska B. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci. 2018;204:20-45.
https://doi.org/10.1016/j.lfs.... PMid:29729263.
34.
Cinar R, Iyer MR, Kunos G. The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther. 2020;208:107477.
https://doi.org/10.1016/j.phar... PMid:31926199 PMCid:PMC8605822.
35.
Pisanti S, Malfitano AM, Ciaglia E, et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther. 2017;175:133-50.
https://doi.org/10.1016/j.phar... PMid:28232276.
36.
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: A potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. ttps://doi.org/10.3390/ijms22179472 PMid:34502379 PMCid:PMC8430969.
37.
Remiszewski P, Malinowska B. Why multitarget vasodilatory (endo) cannabinoids are not effective as antihypertensive compounds after chronic administration: Comparison of their effects on systemic and pulmonary hypertension. Pharmaceuticals. 2022;15(9):1119.
https://doi.org/10.3390/ph1509... PMid:36145339 PMCid:PMC9503677.
38.
Stanley C, O’Sullivan SE. Vascular targets for cannabinoids: Animal and human studies. Br J Pharmacol. 2014;171(6):1361-78.
https://doi.org/10.1111/bph.12... PMid:24329566 PMCid:PMC3954478.
39.
Malinowska B, Toczek M, Pędzińska‐Betiuk A, Schlicker E. Cannabinoids in arterial, pulmonary and portal hypertension–mechanisms of action and potential therapeutic significance. Br J Pharmacol. 2019;176(10):1395-411.
https://doi.org/10.1111/bph.14... PMid:29455452 PMCid:PMC6487561.
41.
Malinowska B, Baranowska‐Kuczko M, Schlicker E. Triphasic blood pressure responses to cannabinoids: Do we understand the mechanism? Br J Pharmacol. 2012;165(7):2073-88.
https://doi.org/10.1111/j.1476... PMid:22022923 PMCid:PMC3413845.
42.
Giménez VMM, Marón FJM, García S, et al. Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension. Adv Med Sci. 2021;66(1):72-80.
https://doi.org/10.1016/j.advm... PMid:33388673.
43.
Golosova D, Levchenko V, Kravtsova O, Palygin O, Staruschenko A. Acute and long-term effects of cannabinoids on hypertension and kidney injury. Sci Rep. 2022;12(1):1-12.
https://doi.org/10.1038/s41598... PMid:35413977 PMCid:PMC9005691.
44.
Koch M. Cannabinoid receptor signaling in central regulation of feeding behavior: A mini-review. Front Neurosci. 2017;11:293.
https://doi.org/10.3389/fnins.... PMid:28596721 PMCid:PMC5442223.
45.
Eid BG, Neamatallah T, Hanafy A, et al. Interference with TGFβ1-mediated inflammation and fibrosis underlies reno-protective effects of the CB1 receptor neutral antagonists AM6545 and AM4113 in a rat model of metabolic syndrome. Molecules. 2021;26(4):866.
https://doi.org/10.3390/molecu... PMid:33562080 PMCid:PMC7914730.
46.
Griffin G, Wray EJ, Tao Q, et al. Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: Further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur J Pharmacol. 1999;377(1):117-25.
https://doi.org/10.1016/S0014-... PMid:10448934.
47.
Ahmad A, Dempsey SK, Daneva Z, et al. Modulation of mean arterial pressure and diuresis by renomedullary infusion of a selective inhibitor of fatty acid amide hydrolase. Am J Physiol Renal Physiol. 2018;315(4):F967-76.
https://doi.org/10.1152/ajpren... PMid:29846106 PMCid:PMC6230737.
48.
Daneva Z, Dempsey SK, Ahmad A, Li N, Li P-L, Ritter JK. Diuretic, natriuretic, and vasodepressor activity of a lipid fraction enhanced in medium of cultured mouse medullary interstitial cells by a selective fatty acid amide hydrolase inhibitor. J Pharmacol Exp Ther. 2019;368(2):187-98.
https://doi.org/10.1124/jpet.1... PMid:30530623 PMCid:PMC6337005.
49.
Tripathi RKP. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents. Eur J Med Chem. 2020;188:111953.
https://doi.org/10.1016/j.ejme... PMid:31945644.
50.
Ahmad A, Daneva Z, Li G, et al. Stimulation of diuresis and natriuresis by renomedullary infusion of a dual inhibitor of fatty acid amide hydrolase and monoacylglycerol lipase. Am J Physiol Renal Physiol. 2017;313(5):F1068-76.
https://doi.org/10.1152/ajpren... PMid:28768662 PMCid:PMC5792154.
51.
Granchi C, Caligiuri I, Minutolo F, Rizzolio F, Tuccinardi T. A patent review of monoacylglycerol lipase (MAGL) inhibitors (2013-2017). Expert Opin Ther Pat. 2017;27(12):1341-51.
https://doi.org/10.1080/135437... PMid:29053063.
52.
De Miguel C, Das S, Lund H, Mattson DL. T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R1136-42.
https://doi.org/10.1152/ajpreg... PMid:20147611 PMCid:PMC2853394.
53.
Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN. Optic nerve damage in experimental mouse ocular hypertension. Invest Ophthalmol Vis Sci. 2003;44(10):4321-30.
https://doi.org/10.1167/iovs.0... PMid:14507876.
55.
Marzoli SB, Ciasca P, Curone M, et al. Quantitative analysis of optic nerve damage in idiopathic intracranial hypertension (IIH) at diagnosis. Neurol Sci. 2013;34(1):143-5.
https://doi.org/10.1007/s10072... PMid:23695066.
56.
Gasecki D, Kwarciany M, Nyka W, Narkiewicz K. Hypertension, brain damage and cognitive decline. Curr Hypertens Rep. 2013;15(6):547-58.
https://doi.org/10.1007/s11906... PMid:24146223 PMCid:PMC3838597.
57.
Chevalier RL. The proximal tubule is the primary target of injury and progression of kidney disease: Role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2016;311(1):F145-61.
https://doi.org/10.1152/ajpren... PMid:27194714 PMCid:PMC4967168.
58.
Hebert LA, Agarwal G, Sedmak DD, Mahan JD, Becker W, Nagaraja HN. Proximal tubular epithelial hyperplasia in patients with chronic glomerular proteinuria. Kidney Int. 2000;57(5):1962-7.
https://doi.org/10.1046/j.1523... PMid:10792614.
59.
Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease: The modification of diet in renal disease study. Ann Intern Med. 1995;123(10):754-62.
https://doi.org/10.7326/0003-4... PMid:7574193.
60.
Taddei S, Nami R, Bruno RM, Quatrini I, Nuti R. Hypertension, left ventricular hypertrophy and chronic kidney disease. Heart Fail Rev. 2011;16(6):615-20.
https://doi.org/10.1007/s10741... PMid:21116711.
61.
Frenay AR, Yu L, van der Velde AR, et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am J Physiol Renal Physiol. 2015;308(5):F500-9.
https://doi.org/10.1152/ajpren... PMid:25503732.
62.
Becker GJ, Hewitson TD. The role of tubulointerstitial injury in chronic renal failure. Curr Opin Nephrol Hypertens. 2000;9(2):133-8.
https://doi.org/10.1097/000415... PMid:10757217.
63.
Padda RS, Shi Y, Lo CS, Zhang SL, Chan JS. Angiotensin-(1-7): A novel peptide to treat hypertension and nephropathy in diabetes? J Diabetes Metab. 2015;6(10):10.4172/2155-6156.1000615.
https://doi.org/10.4172/2155-6... PMid:26793405 PMCid:PMC4716813.
64.
Gai Z, Gui T, Hiller C, Kullak-Ublick GA. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. J Biol Chem. 2016;291(5):2397-411.
https://doi.org/10.1074/jbc.M1... PMid:26655953 PMCid:PMC4732222.
65.
Janssen U, Riley SG, Vassiliadou A, Floege J, Phillips AO. Hypertension superimposed on type II diabetes in Goto Kakizaki rats induces progressive nephropathy. Kidney Int. 2003;63(6):2162-70.
https://doi.org/10.1046/j.1523... PMid:12753303.
66.
Granger JP. An emerging role for inflammatory cytokines in hypertension. Am J Physiol Heart Circ Physiol. 2006;290(3):H923-4.
https://doi.org/10.1152/ajphea... PMid:16467462.
67.
Brouwers FP, de Boer RA, van der Harst P, et al. Influence of age on the prognostic value of mid-regional pro-adrenomedullin in the general population. Heart. 2012;98(18):1348-53.
https://doi.org/10.1136/heartj... PMid:22821276.
68.
Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C-Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296-305.
https://doi.org/10.1056/NEJMoa... PMid:15385656.
69.
Ravera M, Re M, Deferrari L, Vettoretti S, Deferrari G. Importance of blood pressure control in chronic kidney disease. J Am Soc Nephrol. 2006;17(4 Suppl 2):S98-103.
https://doi.org/10.1681/ASN.20... PMid:16565257.
70.
Kidney Disease Outcomes Quality Initiative (K/DOQI). K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis. 2004;43(5 Suppl 1):S1-290.
https://doi.org/10.1053/j.ajkd....
71.
Whitworth JA. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983-92.
https://doi.org/10.1097/000048... PMid:14597836.
72.
Cai W, Zhang Z, Huang Y, Sun H, Qiu L. Vaccarin alleviates hypertension and nephropathy in renovascular hypertensive rats. Exp Ther Med. 2018;15(1):924-32.
https://doi.org/10.3892/etm.20....
73.
Romero JC, Feldstein AE, Rodriguez-Porcel MG, Cases-Amenos A. New insights into the pathophysiology of renovascular hypertension. Mayo Clin Proc. 1997;72(3):251-60.
https://doi.org/10.4065/72.3.2... PMid:9070202.
74.
Červenka L, Horáček V, Vaněčková I, et al. Essential role of AT1A receptor in the development of 2K1C hypertension. Hypertension. 2002;40(5):735-41.
https://doi.org/10.1161/01.HYP... PMid:12411470.
75.
Calzavacca P, Evans RG, Bailey M, Bellomo R, May CN. Variable responses of regional renal oxygenation and perfusion to vasoactive agents in awake sheep. Am J Physiol Regul Integr Comp Physiol. 2015;309(10):R1226-33.
https://doi.org/10.1152/ajpreg... PMid:26354843.
76.
Seeliger E, Wronski T, Ladwig M, et al. The renin-angiotensin system and the third mechanism of renal blood flow autoregulation. Am J Physiol Renal Physiol. 2009;296(6):F1334-45.
https://doi.org/10.1152/ajpren... PMid:19339631.
77.
Mimura I, Nangaku M. The suffocating kidney: Tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol. 2010;6(11):667-78.
https://doi.org/10.1038/nrneph... PMid:20877304.
78.
Welch WJ, Baumgärtl H, Lübbers D, Wilcox CS. Renal oxygenation defects in the spontaneously hypertensive rat: Role of AT1 receptors. Kidney Intl. 2003;63(1):202-8.
https://doi.org/10.1046/j.1523... PMid:12472784.
79.
Norman JT, Stidwill R, Singer M, Fine LG. Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol. 2003;94(2):p39-46.
https://doi.org/10.1159/000071... PMid:12845221.
80.
Hashmi SF, Rathore HA, Sattar MA, et al. Hydrogen sulphide treatment prevents renal ischemia-reperfusion injury by inhibiting the expression of ICAM-1 and NF-kB concentration in normotensive and hypertensive rats. Biomolecules. 2021;11(10):1549.
https://doi.org/10.3390/biom11... PMid:34680182 PMCid:PMC8534271.
81.
Laggner H, Hermann M, Esterbauer H, et al. The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J Hypertens. 2007;25(10):2100-4.
https://doi.org/10.1097/HJH.0b... PMid:17885553.
82.
Al-Magableh MR, Kemp-Harper BK, Hart JL. Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II-induced hypertensive mice. Hypertens Res. 2015;38(1):13-20.
https://doi.org/10.1038/hr.201... PMid:25099489.
83.
Chi Z, Le TPH, Lee SK, et al. Honokiol ameliorates angiotensin II‐induced hypertension and endothelial dysfunction by inhibiting HDAC6‐mediated cystathionine γ‐lyase degradation. J Cell Mol Med. 2020;24(18):10663-76.
https://doi.org/10.1111/jcmm.1... PMid:32755037 PMCid:PMC7521302.
84.
Bellomo R, Di Giantomasso D. Noradrenaline and the kidney: Friends or foes? Crit Care. 2001;5(6):294-8.
https://doi.org/10.1186/cc1052 PMid:11737909 PMCid:PMC137371.
85.
Matejovic M, Träger K, De Backer D. Noradrenaline and the kidney: Foe, friend, or both? Intensive Care Med. 2005;31(11):1476-8.
https://doi.org/10.1007/s00134... PMid:16088409.
86.
Vincent JL, International Sepsis Forum. Hemodynamic support in septic shock. Intensive Care Med. 2001;27 Suppl 1:S80-92.
https://doi.org/10.1007/PL0000... PMid:11307372.
87.
Jou S-B, Cheng J-T. The role of free radicals in the release of noradrenaline from myenteric nerve terminals of guinea-pig ileum. J Auton Nerv Syst. 1997;66(3):126-30.
https://doi.org/10.1016/S0165-... PMid:9406115.
88.
Ahmad A, Sattar MA, Rathore HA, et al. Up regulation of cystathione γ lyase and hydrogen sulphide in the myocardium inhibits the progression of isoproterenol-caffeine induced left ventricular hypertrophy in Wistar Kyoto rats. PLoS One. 2016;11(3):e0150137.
https://doi.org/10.1371/journa... PMid:26963622 PMCid:PMC4786159.
89.
Ahmad A, Sattar MA, Rathore HA, et al. Functional contribution of α1D-adrenoceptors in the renal vasculature of left ventricular hypertrophy induced with isoprenaline and caffeine in Wistar-Kyoto rats. Can J Physiol Pharmacol. 2014;92(12):1029-35.
https://doi.org/10.1139/cjpp-2... PMid:25403946.
90.
Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932-4.
https://doi.org/10.1056/NEJMc0... PMid:19710497.
91.
Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: A multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275-81.
https://doi.org/10.1016/S0140-... PMid:19332353.
92.
Sata Y, Kawada T, Shimizu S, Kamiya A, Akiyama T, Sugimachi M. Predominant role of neural arc in sympathetic baroreflex resetting of spontaneously hypertensive rats. Circ J. 2015;79(3):592-9.
https://doi.org/10.1253/circj.... PMid:25746544.
93.
Mazier W, Saucisse N, Gatta-Cherifi B, Cota D. The endocannabinoid system: Pivotal orchestrator of obesity and metabolic disease. Trends Endocrinol Metab. 2015; 26(10):524-37.
https://doi.org/10.1016/j.tem.... PMid:26412154.
95.
Lim JC, Lim SK, Park MJ, Kim GY, Han HJ, Park SH. Cannabinoid receptor 1 mediates high glucose-induced apoptosis via endoplasmic reticulum stress in primary cultured rat mesangial cells. Am J Physiol Renal Physiol. 2011;301(1):F179-88.
https://doi.org/10.1152/ajpren... PMid:21325497.
96.
Jourdan T, Szanda G, Rosenberg AZ, et al. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci USA. 2014;111(50):E5420-8.
https://doi.org/10.1073/pnas.1... PMid:25422468 PMCid:PMC4273328.
97.
Sampaio LS, Da Silva RT, et al. The endocannabinoid system in renal cells: Regulation of Na(+) transport by CB1 receptors through distinct cell signalling pathways. Br J Pharmacol. 2015;172(19):4615-25.
https://doi.org/10.1111/bph.13... PMid:25537261 PMCid:PMC4594267.
98.
Udi S, Hinden L, Earley B, et al. Proximal tubular cannabinoid-1 receptor regulates obesity-induced CKD. J Am Soc Nephrol. 2017;28(12):3518-32.
https://doi.org/10.1681/ASN.20... PMid:28860163 PMCid:PMC5698062.
99.
Pertwee RG, Howlett AC, Abood ME, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev. 2010;62(4):588-631.
https://doi.org/10.1124/pr.110... PMid:21079038 PMCid:PMC2993256.
100.
Pertwee RG. Cannabinoid pharmacology: The first 66 years. Br J Pharmacol. 2006;147 Suppl 1:S163-71.
https://doi.org/10.1038/sj.bjp... PMid:16402100 PMCid:PMC1760722.
101.
Batkia S, Pacher P, Osei-Hyiaman D, et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation. 2004;110(14):1996-2002.
https://doi.org/10.1161/01.CIR... PMid:15451779 PMCid:PMC2756479.
102.
Niederhoffer N, Schmid K, Szabo B. The peripheral sympathetic nervous system is the major target of cannabinoids in eliciting cardiovascular depression. Naunyn Schmiedebergs Arch Pharmacol. 2003;367(5):434-43.
https://doi.org/10.1007/s00210... PMid:12709782.
103.
Kola B, Hubina E, Tucci SA, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem. 2005;280(26):25196-201.
https://doi.org/10.1074/jbc.C5... PMid:15899896.
104.
Wagner JA, Abesser M, Karcher J, Laser M, Kunos G. Coronary vasodilator effects of endogenous cannabinoids in vasopressin-preconstricted unpaced rat isolated hearts. J Cardiovasc Pharmacol. 2005;46(3):348-55.
https://doi.org/10.1097/01.fjc... PMid:16116341.
105.
Li G, Xia M, Abais JM, Boini K, Li P-L, Ritter JK. Protective action of anandamide and its COX-2 metabolite against l-homocysteine-induced NLRP3 inflammasome activation and injury in podocytes. J Pharmacol Exp Ther. 2016; 358(1):61-70.
https://doi.org/10.1124/jpet.1... PMid:27189966 PMCid:PMC4931881.
106.
Wagner JA, Hu K, Bauersachs J, et al. Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol. 2001;38(7):2048-54.
https://doi.org/10.1016/S0735-... PMid:11738314.
107.
Koura Y, Ichihara A, Tada Y, et al. Anandamide decreases glomerular filtration rate through predominant vasodilation of efferent arterioles in rat kidneys. J Am Soc Nephrol. 2004;15(6):1488-94.
https://doi.org/10.1097/01.ASN... PMid:15153559.
108.
Deutsch DG, Goligorsky MS, Schmid PC, et al. Production and physiological actions of anandamide in the vasculature of the rat kidney. J Clin Invest. 1997;100(6):1538-46.
https://doi.org/10.1172/JCI119... PMid:9294122 PMCid:PMC508335.
109.
Zhou Y, Kong X, Zhao P, et al. Peroxisome proliferator-activated receptor-alpha is renoprotective in doxorubicin-induced glomerular injury. Kidney Int. 2011;79(12):1302-11.
https://doi.org/10.1038/ki.201... PMid:21368746.
110.
Zuo Y, Yang HC, Potthoff SA, et al. Protective effects of PPARgamma agonist in acute nephrotic syndrome. Nephrol Dial Transplant. 2012;27(1):174-81.
https://doi.org/10.1093/ndt/gf... PMid:21565943 PMCid:PMC3276311.
111.
Park CW, Kim HW, Ko SH, et al. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes. 2006;55(4):885-93.
https://doi.org/10.2337/diabet... PMid:16567507.
112.
Kirchhoff F, Krebs C, Abdulhag UN, et al. Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney Int. 2008;73(5):643-50.
https://doi.org/10.1038/sj.ki.... PMid:18033241.
113.
Rozenfeld R, Gupta A, Gagnidze K, et al. AT1R-CB(1)R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 2011; 30(12):2350-63.
https://doi.org/10.1038/emboj.... PMid:21540834 PMCid:PMC3116274.
114.
Nam DH, Lee MH, Kim JE, et al. Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology. 2012;153(3):1387-96.
https://doi.org/10.1210/en.201... PMid:22234468.
115.
Barutta F, Corbelli A, Mastrocola R, et al. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes. 2010;59(4): 1046-54.
https://doi.org/10.2337/db09-1... PMid: 20068137 PMCid:PMC2844813.
116.
Barutta F, Bruno G, Mastrocola R, Bellini S, Gruden G. The role of cannabinoid signaling in acute and chronic kidney diseases. Kidney Int. 2018;94(2):252-8.
https://doi.org/10.1016/j.kint... PMid:29706358.