ORIGINAL ARTICLE
Epidemiological characteristics and seasonal variation of measles, pertussis, and influenza in Kazakhstan between 2010-2020 years
More details
Hide details
1
Department of Medicine, Nazarbayev University School of Medicine, Astana, KAZAKHSTAN
2
Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, KAZAKHSTAN
3
Department of Pediatric Infectious Diseases, Astana Medical University, Astana, KAZAKHSTAN
4
Clinical Academic Department of Internal Medicine, CF “University Medical Center”, Astana, KAZAKHSTAN
Online publication date: 2022-11-08
Publication date: 2023-01-01
Electron J Gen Med 2023;20(1):em428
KEYWORDS
ABSTRACT
Background:
Vaccine-preventable diseases such as pertussis, measles, and influenza remain among the most significant medical and socioeconomic issues in Kazakhstan, despite significant vaccination achievements. Thus, here we aimed to analyze the long-term dynamics and provide information on the current epidemiology of pertussis, measles, and influenza in Kazakhstan.
Methods:
A retrospective analysis of the long-term dynamics of infectious diseases was carried out using the data from the statistical collections for 2010-2020 and the Unified Payment System from 2014 to 2020.
Results:
During the 2010-2020 years, the long-term dynamics show an unequal distribution of pertussis, measles, and influenza-related morbidity. In comparison with earlier years, registration of infectious disease was the highest in 2019 and 2020. The incidence cases among registered infectious diseases in 2019 were: pertussis-147, measles-13,326, and in 2020: influenza-2,678. High incidence rates have been documented in Pavlodar, North Kazakhstan, Mangystau regions, and the cities of Shymkent and Nur-Sultan. The incidence varies depending on the seasonality: pertussis (summer-autumn), measles (winter-spring), and influenza (mostly in winter).
Conclusion:
The findings highlight the importance of focusing more on the characteristics of the epidemic process of vaccine-preventable diseases in order to assess the effectiveness of implemented measures and verify new routes in strengthening the epidemiological surveillance system.
REFERENCES (58)
1.
Yi L, Xu X, Ge W, et al. The impact of climate variability on infectious disease transmission in China: Current knowledge and further directions. Environ Res. 2019;173:255-61.
https://doi.org/10.1016/j.envr... PMid:30928856.
2.
Shi F, Yu C, Yang L, et al. Exploring the dynamics of hemorrhagic fever with renal syndrome incidence in East China through seasonal autoregressive integrated moving average models. Infect Drug Resist. 2020;13:2465-75.
https://doi.org/10.2147/IDR.S2... PMid:32801786 PMCid:PMC7383097.
3.
McMichael AJ, Campbell-Lendrum DH, Corvalan CF, et al. Climate change and human health: Risks and responses. 2003. Available at:
https://apps.who.int/iris/hand... (Accessed 1 March 2022).
4.
Hansen JW, Dilley M, Goddard L, Ebrahimian E, Ericksen P. Climate variability and the millennium development goal hunger target. 2004. Available at:
https://academiccommons.columb... (Accessed 1 March 2022).
6.
Connor SJ, Ceccato P, Dinku T, Omumbo J, Grover-Kopec E, Thomson MC. Using climate information for improved health in Africa: Relevance, constraints and opportunities. Geospat Health. 2006;1(1):17-36.
https://doi.org/10.4081/gh.200....
7.
Burke D, Carmichael A, Focks D. Under the weather: Climate, ecosystems, and infectious disease. Washington, DC: National Academy Press; 2001.
11.
Kuhn K, Campbell-Lendrum D, Haines A, Cox J. Using climate to predict infectious disease epidemics. 2005. Available at:
https://doi.org/10.22233/20412... (Accessed 1 March 2022).
13.
Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005;438(7066): 310-7.
https://doi.org/10.1038/nature... PMid:16292302.
14.
Centers for Disease Control & Prevention (CDC). Ten great public health achievements--United States, 1900-1999. MMWR Morb Mortal Wkly Rep. 1999;48(12):241-3.
15.
Roush SW, Murphy TV, Vaccine-Preventable Disease Table Working Group. Historical comparisons of morbidity and mortality for vaccine-preventable diseases in the United States. JAMA. 2007;298(18):2155-63.
https://doi.org/10.1001/jama.2... PMid:18000199.
16.
Anderson RM, Grenfell BT, May RM. Oscillatory fluctuations in the incidence of infectious disease and the impact of vaccination: A time-series analysis. J Hyg (Lond). 1984;93(3):587-608.
https://doi.org/10.1017/S00221... PMid:6512259 PMCid:PMC2129464.
17.
Anderson RM, May RM. Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press; 1991.
18.
Mielke JH. Historical epidemiology of measles and scarlet fever in Aland, Finland. Rivista di Antropologia [J Anthropol.]. 1996;74:127-38.
19.
Sumi A. Time series analysis of surveillance data of infectious diseases in Japan. Hokkaido Igaku Zasshi. 1998;73(4):343-63.
20.
Schild GC. Influenza. In: Howe G, editor. A geography of human disease. London: Academic Press; 1977. p. 339-76.
22.
Wang Y, Xu C, Wang Z, Zhang S, Zhu Y, Yuan J. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet-based SARIMA-NAR hybrid model. PLoS One. 2018;13(12):e0208404.
https://doi.org/10.1371/journa... PMid:30586416 PMCid:PMC6306235.
23.
Nnaji CA, Shey MS, Adetokunboh OO, Wiysonge CS. Immunogenicity and safety of fractional dose yellow fever vaccination: A systematic review and meta-analysis. Vaccine. 2020;38(6):1291-301.
https://doi.org/10.1016/j.vacc... PMid:31859201.
24.
Huang X, Lambert S, Lau C, et al. Assessing the social and environmental determinants of pertussis epidemics in Queensland, Australia: A Bayesian spatio-temporal analysis. Epidemiol Infect. 2017;145(6):1221-30.
https://doi.org/10.1017/S09502... PMid:28091337 PMCid:PMC9507837.
25.
Blackwood JC, Cummings DA, Broutin H, Iamsirithaworn S, Rohani P. The population ecology of infectious diseases: pertussis in Thailand as a case study. Parasitology. 2012;139(14):1888-98.
https://doi.org/10.1017/S00311... PMid:22717183.
26.
Holzmann H, Hengel H, Tenbusch M, Doerr HW. Eradication of measles: Remaining challenges. Med Microbiol Immunol. 2016;205(3):201-8.
https://doi.org/10.1007/s00430... PMid:26935826 PMCid:PMC4866980.
27.
Zhang M-X, Ai J-W, Li Y, Zhang B-Y, Zhang W-H. Measles outbreak among adults, Northeastern China, 2014. Emerg Infect Dis. 2016;22(1):144-6.
https://doi.org/10.3201/eid220... PMid:26689632 PMCid:PMC4696708.
29.
Wang WJ, Zhang J, Zhang CJ, Zhang CZ, Huang FS. A case-crossover study on the impact of daily average temperature on the incidence of measles, Jining City. Prev Med Trib. 2018;24(020):81-3.
30.
Xue XP, Zhang ZQ, Zhang YP. The relationship between measles incidence and climate change in Taiyuan. Prev Med Trib. 2009;15(11):1071-3.
32.
Cassini A, Colzani E, Pini A, et al. Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): Results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013. Euro Surveill. 2018;23(16):1700454.
https://doi.org/10.2807/1560-7... PMid:29692315 PMCid:PMC5915974.
33.
Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391(10127):1285-300.
https://doi.org/10.1016/S0140-....
34.
Yang L, Ma S, Chen PY, et al. Influenza associated mortality in the subtropics and tropics: Results from three Asian cities. Vaccine. 2011;29(48):8909-14.
https://doi.org/10.1016/j.vacc... PMid:21959328 PMCid:PMC7115499.
35.
Li L, Liu Y, Wu P, et al. Influenza-associated excess respiratory mortality in China, 2010-15: A population-based study. Lancet Public Health. 2019;4(9):e473-81.
https://doi.org/10.1016/S2468-....
36.
Martinez ME. The calendar of epidemics: Seasonal cycles of infectious diseases. PLoS Pathog. 2018;14(11):e1007327.
https://doi.org/10.1371/journa... PMid:30408114 PMCid:PMC6224126.
37.
Republican Center for Healthcare Development (RCHD). Statistical collections “The health of the population of the Republic of Kazakhstan and the activities of healthcare organizations.” 2022. Available at:
http://www.rcrz.kz (Accessed 1 March 2022).
39.
The Republic of Kazakhstan. Official website of the President of the Republic of Kazakhstan. 2022. Available at:
https://akorda.kz/ (Accessed 1 March 2022).
42.
Kazhydromet. The national hydrometeorological service of the Republic of Kazakhstan. 2022. Available at:
https://www.kazhydromet.kz/en/ (Accessed 1 March 2022).
43.
Bureau of National Statistics. Statistics Committee of the Ministry of National Economy of the Republic of Kazakhstan. 2022. Available at:
https://stat.gov.kz/ (Accessed 1 March 2022).
44.
Hall V, Banerjee E, Kenyon C, et al. Measles outbreak– Minnesota April-May 2017. MMWR Morb Mortal Wkly Rep. 2017;66(27):713-7.
https://doi.org/10.15585/mmwr.... PMid:28704350 PMCid:PMC5687591.
45.
Rota PA, Featherstone DA, Bellini WJ. Molecular epidemiology of measles virus. Curr Top Microbiol Immunol. 2009;330:129-50.
https://doi.org/10.1007/978-3-... PMid:19203108.
46.
Zhuzzhasarova A, Bayesheva D, Turdalina B, Aimahanbetovna A. Epidemiological situation on measles in the Republic of Kazakhstan. Int J Infect Dis. 2020;101(S1):366-7.
https://doi.org/10.1016/j.ijid....
47.
De Greeff SC, Dekkers AL, Teunis P, Rahamat-Langendoen JC, Mooi FR, de Melker HE. Seasonal patterns in time series of pertussis. Epidemiol Infect. 2009;137(10):1388-95.
https://doi.org/10.1017/S09502... PMid:19327200.
48.
Murayama T, Hewlett EL, Maloney NJ, Justice JM, Moss J. Effect of temperature and host factors on the activities of pertussis toxin and Bordetella adenylate cyclase. Biochemistry. 1994;33(51):15293-7.
https://doi.org/10.1021/bi0025... PMid:7803392.
49.
Zhang Y, Milinovich G, Xu Z, et al. Monitoring pertussis infections using internet search queries. Sci Rep. 2017;7(1):10437.
https://doi.org/10.1038/s41598... PMid:28874880 PMCid:PMC5585203.
50.
Skowronski DM, De Serres G, MacDonald D, et al. The changing age and seasonal profile of pertussis in Canada. J Infect Dis. 2002;185(10):1448-53.
https://doi.org/10.1086/340280 PMid:11992280.
51.
Ruiz MC, Leon T, Diaz Y, Michelangeli F. Molecular biology of rotavirus entry and replication. ScientificWorldJournal. 2009;9:1476-97.
https://doi.org/10.1100/tsw.20... PMid:20024520 PMCid:PMC5823125.
52.
De Jong JG. The survival of measles virus in air, in relation to the epidemiology of measles. Arch Gesamte Virusforsch. 1965;16:97-102.
https://doi.org/10.1007/BF0125... PMid:14322937.
54.
Tolegenova AM, Alekesheva LZ, Smagul MA. Epidemiological characteristics of measles infection according to the data of a retrospective epidemiological analysis. 2014. Available at:
https://adilet.zan.kz/kaz/docs... (Accessed 1 March 2022).
55.
Minhaz Ud-Dean SM. Structural explanation for the effect of humidity on persistence of airborne virus: Seasonality of influenza. J Theor Biol. 2010;264(3):822-9.
https://doi.org/10.1016/j.jtbi... PMid:20227421.
56.
Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8(2):e1000316.
https://doi.org/10.1371/journa... PMid:20186267 PMCid:PMC2826374.
57.
Tamerius JD, Shaman J, Alonso WJ, et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 2013;9(3):e1003194.
https://doi.org/10.1371/journa... PMid:23505366 PMCid:PMC3591336.
58.
Sheldenkar A, Lim F, Yung CF, Lwin MO. Acceptance and uptake of influenza vaccines in Asia: A systematic review. Vaccine. 2019;37(35):4896-905.
https://doi.org/10.1016/j.vacc... PMid:31301918.