ORIGINAL ARTICLE
Impact of the COVID-19 pandemic on the outcomes of Indonesian chronic disease management program
 
More details
Hide details
1
Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, INDONESIA
 
2
Department of Internal Medicine, University Medical Center Groningen, Groningen, THE NETHERLANDS
 
3
Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medicine, Universitas Airlangga–Dr. Soetomo General Academic Hospital, Surabaya, INDONESIA
 
4
Faculty of Medicine Universitas Airlangga, Surabaya, INDONESIA
 
5
Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga–Dr. Soetomo General Academic Hospital, Surabaya, INDONESIA
 
6
Department of Internal Medicine, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Central Jakarta, INDONESIA
 
7
Center for Global Health, University of Chicago, Chicago, IL, USA
 
8
Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, INDONESIA
 
9
Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, JAPAN
 
10
Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, INDONESIA
 
11
University Medical Center Groningen, Groningen, THE NETHERLANDS
 
 
Online publication date: 2023-09-11
 
 
Publication date: 2023-11-01
 
 
Electron J Gen Med 2023;20(6):em541
 
KEYWORDS
ABSTRACT
Background:
The Indonesian Government launched chronic disease management program (PROLANIS) with the aim of improving clinical outcomes and preventing disease complications of patients with type 2 diabetes (T2D). During the coronavirus disease 2019 (COVID-19) pandemic, the overwhelmed healthcare system shifted resources away from non-communicable diseases in the attempt to mitigate it. Thus, the implementation of PROLANIS during the COVID-19 pandemic might not be as optimal as before the pandemic era, leading to worse clinical outcomes. This pilot study aims to evaluate the impact of the COVID-19 pandemic on PROLANIS in rural areas by analyzing the changes of metabolic control and renal function parameters.

Methods:
This study used data from three PROLANIS groups report in rural areas in East Java Province, Indonesia. Study population was PROLANIS participants who came for six-month-evaluation in December 2019 (T0), June 2020 (T1), and December 2020 (T2). Evaluated metabolic control parameters were body mass index (BMI), blood pressure, hemoglobin A1C (HbA1C), total cholesterol (TC), high-density lipid, low-density lipid, and triglyceride (TG), whereas evaluated renal function parameters were blood urea nitrogen, serum creatinine, and urinary albumin. Independent t-test and Wilcoxon signed-rank test were used for statistical analyses. p-value <0.05 was considered statistically significant.

Results:
Among 52 PROLANIS participants included in the analyses, four metabolic control parameters (BMI, blood pressure, TC, and TG) and all renal function parameters significantly worsened right after the pandemic started but improved 6 months afterwards. Meanwhile, HbA1C continuously worsened throughout the study period, albeit statistically insignificant.

Conclusions:
The metabolic control and renal function parameters in our study population deteriorates especially in the beginning of the COVID-19 pandemic.

REFERENCES (58)
1.
Safiri S, Karamzad N, Kaufman JS, et al. Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the global burden of disease study 2019. Front Endocrinol (Lausanne). 2022; 13:838027. https://doi.org/10.3389/fendo.... PMid:35282442 PMCid:PMC8915203.
 
2.
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci Rep. 20208; 10(1):14790. https://doi.org/10.1038/s41598... PMid:32901098 PMCid:PMC7478957.
 
3.
Bommer C, Heesemann E, Sagalova V, et al. The global economic burden of diabetes in adults aged 20-79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 2017; 5(6):423-30. https://doi.org/10.1016/S2213-... PMid:28456416.
 
4.
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes–Global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107-11. https://doi.org/10.2991/jegh.k... PMid:32175717 PMCid:PMC7310804.
 
5.
Hasil Utama RISKESDAS 2018 [2018 RISKESDAS Key Results]. Kementerian Kesehatan Republik Indonesia [Ministry of Health of the Republic of Indonesia]; 2018.
 
6.
International Diabetes Federation. IDF diabetes atlas. Available at: https://www.diabetesatlas.org (Accessed: 17 May 2023).
 
7.
Pimouguet C, Le Goff M, Thiebaut R, Dartigues JF, Helmer C. Effectiveness of disease-management programs for improving diabetes care: A meta-analysis. CMAJ. 20118; 183(2):E115-27. https://doi.org/10.1503/cmaj.0... PMid:21149524 PMCid:PMC3033953.
 
8.
Khoe LC, Wangge G, Soewondo P, Tahapary DL, Widyahening IS. The implementation of community-based diabetes and hypertension management care program in Indonesia. PLoS One. 2020;15(1):e0227806. https://doi.org/10.1371/journa... PMid:31935256 PMCid:PMC6959571.
 
9.
Putri LP, Mawarni D, Trisnantoro L. Challenges of shifting diabetes mellitus care from secondary- to primary-level care in urban and rural districts: A qualitative inquiry among health providers. J Prim Care Community Health. 2020;11:2150132720924214. https://doi.org/10.1177/215013... PMid:32517534 PMCid:PMC7288842.
 
10.
Andanalusia M, Athiyah U, Nita Y. Medication adherence in diabetes mellitus patients at Tanjung Karang Primary Health Care Center, Mataram. J Basic Clin Physiol Pharmacol. 2019;30(6):/j/jbcpp.2019.30.issue-6/jbcpp-2019-0287/jbcpp-2019-0287.xml. https://doi.org/10.1515/jbcpp-... PMid:31851613.
 
11.
Zairina E, Nugraheni G, Sulistyarini A, et al. Factors related to barriers and medication adherence in patients with type 2 diabetes mellitus: A cross-sectional study. J Diabetes Metab Disord. 2022;21(1):219-28. https://doi.org/10.1007/s40200... PMid:35673517 PMCid:PMC9167265.
 
12.
Rachmawati S, Prihhastuti-Puspitasari H, Zairina E. The implementation of a chronic disease management program (PROLANIS) in Indonesia: A literature review. J Basic Clin Physiol Pharmacol. 2019;30(6):/j/jbcpp.2019.30.issue-6/jbcpp-2019-0350/jbcpp-2019-0350.xml. https://doi.org/10.1515/jbcpp-... PMid:31860469.
 
13.
Widayanti AW, Green JA, Heydon S, Norris P. Health-seeking behavior of people in Indonesia: A narrative review. J Epidemiol Glob Health. 2020;10(1):6-15. https://doi.org/10.2991/jegh.k... PMid:32175705 PMCid:PMC7310809.
 
14.
Hamid H, Abid Z, Amir A, Rehman TU, Akram W, Mehboob T. Current burden on healthcare systems in low- and middle-income countries: Recommendations for emergency care of COVID-19. Drugs Ther Perspect. 2020;36(10):466-8. https://doi.org/10.1007/s40267... PMid:32837195 PMCid:PMC7415010.
 
15.
Mahendradhata Y, Andayani N, Hasri ET, et al. The capacity of the Indonesian healthcare system to respond to COVID-19. Front Public Health. 2021;9:649819. https://doi.org/10.3389/fpubh.... PMid:34307272 PMCid:PMC8292619.
 
16.
World Health Organization. The Impact of the COVID-19 pandemic on noncommunicable disease resources and services: Results of a rapid assessment 2020. Available at: https://www.who.int/publicatio... (Accessed: 17 May 2023).
 
17.
Kshanti IA, Epriliawati M, Mokoagow MI, Nasarudin J, Magfira N. The impact of COVID-19 lockdown on diabetes complication and diabetes management in people with diabetes in Indonesia. J Prim Care Community Health. 2021;12:21501327211044888. https://doi.org/10.1177/215013... PMid:34541963 PMCid:PMC8461120.
 
18.
BPJS Kesehatan. Info BPJS kesehatan: Implementasi PROLANIS di masa pandemi COVID-19 2021 [BPJS Kesehatan info: Implementation of PROLANIS during the 2021 COVID-19 pandemic]. Available at: https://bpjs-kesehatan.go.id/b... (Accessed: 17 May 2023).
 
19.
Azelton KR, Crowley AP, Vence N, et al. Digital health coaching for type 2 diabetes: Randomized controlled trial of healthy at home. Front Digit Health. 2021;3:764735. https://doi.org/10.3389/fdgth.... PMid:34901926 PMCid:PMC8655126.
 
20.
Oksman E, Linna M, Horhammer I, Lammintakanen J, Talja M. Cost-effectiveness analysis for a tele-based health coaching program for chronic disease in primary care. BMC Health Serv Res. 2017;17(1):138. https://doi.org/10.1186/s12913... PMid:28202032 PMCid:PMC5312514.
 
21.
Mahendradhata Y, Trisnantoro L, Listyadewi S, et al. The Republic of Indonesia health system review. WHO Regional Office for South-East Asia; 2017.
 
22.
Yunus F, Andarini S. Letter from Indonesia. Respirology. 2020;25(12):1328-9. https://doi.org/10.1111/resp.1... PMid:33029841.
 
23.
Dean AG, Arner TG, Sunki GG, et al. Epi Info™, a database and statistics program for public health professionals. CDC; 2011.
 
24.
Lambers Heerspink HJ, Brantsma AH, de Zeeuw D, et al. Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am J Epidemiol. 2008;168(8):897-905. https://doi.org/10.1093/aje/kw... PMid:18775924.
 
25.
Soelistijo SA, Suastika K, Lindarto D, et al. Pedoman pengelolaan dan pencegahan diabetes melitus tipe 2 dewasa di Indonesia [Guidelines for the management and prevention of type 2 diabetes mellitus in adults in Indonesia]. PB Perkeni; 2021.
 
26.
Maulidati LF, Maharani C. Evaluasi program pengelolaan penyakit kronis (PROLANIS) pada masa pandemi COVID-19 di Puskesmas Temanggung. J Public Health. 2022;10(2):11. https://doi.org/10.14710/jkm.v....
 
27.
Atmaja INDJ. Analysis of implementation of the chronic disease management program (PROLANIS) diabetes mellitus type 2 (DMT2) during the COVID-19 pandemic at the West Lombok District Health Center. Prisma Sains: J Stud Sci Learn MIPA IKIP Mataram. 2022;10(2):8. https://doi.org/10.33394/j-ps.....
 
28.
Hu Z, Youn HM, Quan J, et al. The indirect impact of the COVID-19 pandemic on people with type 2 diabetes mellitus and without COVID-19 infection: Systematic review and meta-analysis. Prim Care Diabetes. 2023; 17(3):229-37. https://doi.org/10.1016/j.pcd.... PMid:36872178 PMCid:PMC9977626.
 
29.
Karatas S, Yesim T, Beysel S. Impact of lockdown COVID-19 on metabolic control in type 2 diabetes mellitus and healthy people. Prim Care Diabetes. 2021;15(3):424-7. https://doi.org/10.1016/j.pcd.... PMid:33441263 PMCid:PMC7834877.
 
30.
Falcetta P, Aragona M, Ciccarone A, et al. Impact of COVID-19 lockdown on glucose control of elderly people with type 2 diabetes in Italy. Diabetes Res Clin Pract. 2021; 174:108750. https://doi.org/10.1016/j.diab... PMid:33722703 PMCid:PMC9754212.
 
31.
Selek A, Gezer E, Altun E, et al. The impact of COVID-19 pandemic on glycemic control in patients with diabetes mellitus in Turkey: A multi-center study from Kocaeli. J Diabetes Metab Disord. 2021;20(2):1461-7. https://doi.org/10.1007/s40200... PMid:34466406 PMCid:PMC8393783.
 
32.
Arsenault C, Gage A, Kim MK, et al. COVID-19 and resilience of healthcare systems in ten countries. Nat Med. 2022;28(6):1314-24. https://doi.org/10.1038/s41591... PMid:35288697 PMCid:PMC9205770.
 
33.
Han E, Tan MMJ, Turk E, et al. Lessons learnt from easing COVID-19 restrictions: An analysis of countries and regions in Asia Pacific and Europe. Lancet. 2020;396(10261):1525-34. https://doi.org/10.1016/S0140-... PMid:32979936.
 
34.
Stockwell S, Trott M, Tully M, et al. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc Med. 2021;7(1):e000960. https://doi.org/10.1136/bmjsem... PMid:34192010 PMCid:PMC7852071.
 
35.
Ruiz-Roso MB, Knott-Torcal C, Matilla-Escalante DC, et al. COVID-19 lockdown and changes of the dietary pattern and physical activity habits in a cohort of patients with type 2 diabetes mellitus. Nutrients. 2020;12(8):2327. https://doi.org/10.3390/nu1208... PMid:32759636 PMCid:PMC7468739.
 
36.
Bohn B, Herbst A, Pfeifer M, et al. Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: A cross-sectional multicenter study of 18,028 patients. Diabetes Care. 2015;38(8):1536-43. https://doi.org/10.2337/dc15-0... PMid:26015557.
 
37.
Zhang Y, Yang J, Ye J, et al. Separate and combined associations of physical activity and obesity with lipid-related indices in non-diabetic and diabetic patients. Lipids Health Dis. 2019;18(1):49. https://doi.org/10.1186/s12944... PMid:30755212 PMCid:PMC6371482.
 
38.
Althoff T, Sosic R, Hicks JL, King AC, Delp SL, Leskovec J. Large-scale physical activity data reveal worldwide activity inequality. Nature. 2017;547(7663):336-9. https://doi.org/10.1038/nature... PMid:28693034 PMCid:PMC5774986.
 
39.
Arovah NI. The correlates of physical activity during COVID-19 pandemic among Indonesian young adults: A longitudinal study. J Educ Health Promot. 2022;11:179. https://doi.org/10.4103/jehp.j... PMid:35847142 PMCid:PMC9277751.
 
40.
Summers C, Lima Do Vale M, Haines L, et al. A web-based survey assessing perceived changes in diet, physical activity and sleeping behaviours in adults with type 1 and type 2 diabetes during the COVID-19 pandemic in the UK. BMJ Nutr Prev Health. 2022;5(2):137-44. https://doi.org/10.1136/bmjnph... PMid:36619338 PMCid:PMC9813628.
 
41.
Handayani OWK, Nugroho E, Hermawati B. Determinant of diabetes mellitus focusing on differences of Indonesian culture: Case studies in the Java and Outer Java Region in Indonesia. Open Public Health J. 2020;13:323-40. https://doi.org/10.2174/187494....
 
42.
Kishimoto M, Ishikawa T, Odawara M. Behavioral changes in patients with diabetes during the COVID-19 pandemic. Diabetol Int. 2021;12(2):241-5. https://doi.org/10.1007/s13340... PMid:33020726 PMCid:PMC7526069.
 
43.
Kementerian Kesehatan Republik Indonesia [Ministry of Health of the Republic of Indonesia]. Profil kesehatan Indonesia 2020 [Indonesia health profile 2020]. Kementerian Kesehatan RI [Indonesian Ministry of Health]; 2021.
 
44.
Sarkar C, Webster C, Gallacher J. Are exposures to ready-to-eat food environments associated with type 2 diabetes? A cross-sectional study of 347 551 UK Biobank adult participants. Lancet Planet Health. 2018;2(10):e438-50. https://doi.org/10.1016/S2542-... PMid:30318101.
 
45.
Sidor A, Rzymski P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients. 2020;12(6):1657. https://doi.org/10.3390/nu1206... PMid:32503173 PMCid:PMC7352682.
 
46.
Deschasaux-Tanguy M, Druesne-Pecollo N, Esseddik Y, et al. Diet and physical activity during the coronavirus disease 2019 (COVID-19) lockdown (March-May 2020): Results from the French NutriNet-Sante cohort study. Am J Clin Nutr. 2021;113(4):924-38. https://doi.org/10.1093/ajcn/n... PMid:33675635 PMCid:PMC7989637.
 
47.
Aji AS, Surendran S, Rahayu HK, et al. Eating habits and lifestyle changes during COVID-19 pandemic among Indonesian college students: Results from Indonesia dietary and lifestyle changes (IDLC) study. Malaysian J Med Health Sci. 2022;18:14-20.
 
48.
Anyanwu OA, Naumova EN, Chomitz VR, et al. The effects of the COVID-19 pandemic on nutrition, health and environment in Indonesia: A qualitative investigation of perspectives from multi-disciplinary experts. Int J Environ Res Public Health. 2022;19(18):11575. https://doi.org/10.3390/ijerph... PMid:36141848 PMCid:PMC9517566.
 
49.
Ghosh A, Arora B, Gupta R, Anoop S, Misra A. Effects of nationwide lockdown during COVID-19 epidemic on lifestyle and other medical issues of patients with type 2 diabetes in north India. Diabetes Metab Syndr. 2020;14(5):917-20. https://doi.org/10.1016/j.dsx.... PMid:32574982 PMCid:PMC7265851.
 
50.
Harbuwono DS, Handayani D, Wahyuningsih ES, et al. Impact of diabetes mellitus on COVID-19 clinical symptoms and mortality: Jakarta’s COVID-19 epidemiological registry. Prim Care Diabetes. 2022;16(1):65-8. https://doi.org/10.1016/j.pcd.... PMid:34857490 PMCid:PMC8585608.
 
51.
Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia–A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14(4):395-403. https://doi.org/10.1016/j.dsx.... PMid:32334395 PMCid:PMC7162793.
 
52.
Advance Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008; 358(24):2560-72. https://doi.org/10.1056/NEJMoa... PMid:18539916.
 
53.
Wong MG, Perkovic V, Chalmers J, et al. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care. 2016;39(5):694-700. https://doi.org/10.2337/dc15-2... PMid:27006512.
 
54.
Trevisan R, Dodesini AR, Lepore G. Lipids and renal disease. J Am Soc Nephrol. 2006;17(4 Suppl 2):S145-7. https://doi.org/10.1681/ASN.20... PMid:16565240.
 
55.
Luzi L, Carruba M, Crialesi R, et al. Telemedicine and urban diabetes during COVID-19 pandemic in Milano, Italy during lock-down: Epidemiological and sociodemographic picture. Acta Diabetol. 2021;58(7):919-27. https://doi.org/10.1007/s00592... PMid:33740123 PMCid:PMC7977495.
 
56.
Tourkmani AM, ALHarbi TJ, Bin Rsheed AM, et al. The impact of telemedicine on patients with uncontrolled type 2 diabetes mellitus during the COVID-19 pandemic in Saudi Arabia: Findings and implications. J Telemed Telecare. 2021:1357633X20985763. https://doi.org/10.1177/135763... PMid:33525952 PMCid:PMC10195693.
 
57.
Ambarita AT, Nurwahyuni A. Analysis of implementation chronic disease program (PROLANIS) during pandemic COVID-19 on primary health care. Indonesian J Public Health. 2022;9(1):24-31. https://doi.org/10.35308/j-kes....
 
58.
Widiawaty MA, Lam KC, Dede M, Asnawi NH. Spatial differentiation and determinants of COVID-19 in Indonesia. BMC Public Health. 2022;22(1):1030. https://doi.org/10.1186/s12889... PMid:35606710 PMCid:PMC9125018.
 
eISSN:2516-3507
Journals System - logo
Scroll to top