ORIGINAL ARTICLE
Long-term humoral and cellular responses elicited by Gam-COVID-Vac vaccine in hemodialysis patients: A prospective cohort study
 
More details
Hide details
1
Saint Petersburg State University Hospital, Saint-Petersburg, RUSSIA
 
2
Moscow Regional Research and Clinical Institute, Moscow, RUSSIA
 
 
Publication date: 2024-07-09
 
 
Electron J Gen Med 2024;21(4):em597
 
KEYWORDS
ABSTRACT
Purpose:
The aim of this study is to assess long-term immunogenicity of the recombinant adenoviruses 26 and 5 vector-based COVID-19 vaccine Gam-COVID-Vac (Sputnik V, developed by N. F. Gamaleya National Research Centre, Russia) in patients receiving maintenance hemodialysis (HD) compared to healthy subjects.

Materials & methods:
A prospective cohort study included patients treated with maintenance HD (n=23) and healthy volunteers (n=28). The levels of anti-severe acute respiratory syndrome coronavirus-2 specific IgG as well as specific T-cell responses were quantified in all participants at two time points: one and six months after complete vaccination. All participates were adults, had been vaccinated twice with Gam-COVID-Vac and had no prior history of confirmed COVID-19.

Results:
In both groups, IgG levels decreased from month one to six, however, antibodies did not decline more rapidly in HD group (analysis of variance p=0.7214 for the “time×group” interaction, non-adjusted model). At the end of the study, 48.0% of non-HD and 67.0% of HD participants showed T-cell positivity. T-spot counts dropped over time in non-HD controls, but not in HD subjects (p=0.0080 and p=0.1800, respectively).

Conclusions:
Patients receiving HD maintain significant long-term humoral response after Gam-COVID-Vac vaccination, which is comparable to that in subjects with normal kidney function. Cellular response turned up to be more sustained over time in HD group.
REFERENCES (30)
1.
Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-81. https://doi.org/10.1016/S0140-... PMid:33545094.
 
2.
Chahla RE, Tomas-Grau RH, Cazorla SI, et al. Long-term analysis of antibodies elicited by SPUTNIK V: A prospective cohort study in Tucumán, Argentina. Lancet Reg Health Am. 2022;6:100123. https://doi.org/10.1016/j.lana... PMid:34841388 PMCid:PMC8604626.
 
3.
Feng S, Phillips DJ, White T, et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat Med. 2021;27(11):2032-40. https://doi.org/10.1038/s41591... PMid:34588689 PMCid:PMC8604724.
 
4.
Rasche MM, Kaufmann EC, Ratishvili T, Swanson IM, Ovsyannikova IG, Kennedy RB. Detection of SARS-CoV-2-specific cells utilizing whole proteins and/or peptides in human PBMCs using IFN-ƴ ELISPOT assay. Methods Mol Biol. 2024;2768:117-33. https://doi.org/10.1007/978-1-... PMid:38502391.
 
5.
Rosa-Diez G, Papaginovic Leiva MM, Lombi F, et al. Safety and effectiveness of COVID-19 SPUTNIK V vaccine in dialysis patients. Medicina (B Aires). 2022;82(5):631-40. https://doi.org/10.1101/2021.1....
 
6.
Portilho AI, Gimenes Lima G, De Gaspari E. Enzyme-linked immunosorbent assay: An adaptable methodology to study SARS-CoV-2 humoral and cellular immune responses. J Clin Med. 2022;11(6):1503. https://doi.org/10.3390/jcm110... PMid:35329828 PMCid:PMC8948777.
 
7.
www.euroimmun.co.jp. Anti-SARS-CoV-2 ELISA (IgG) instructions for use. Available at: https://www.euroimmun.co.jp/fi... (Accessed: 25 April 2024).
 
8.
Infantino M, Pieri M, Nuccetelli M, et al. The WHO international standard for COVID-19 serological tests: Towards harmonization of anti-spike assays. Int Immunopharmacol. 2021;100:108095. https://doi.org/10.1016/j.inti... PMid:34619529 PMCid:PMC8403673.
 
9.
Poteryaev DA, Abbasova SG, Ignatyeva PE, Strizhakova OM, Kolesnik SV, Khamitov RA. Assessment of T-cell immunity to SARS-CoV-2 in COVID-19 convalescents and vaccinated subjects, using TigraTest® SARS-CoV-2 ELISPOT kit. Biol Prod Prev Diagn Treat. 2021;21(3):178-92. https://doi.org/10.30895/2221-....
 
10.
Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale (NJ): L. Erlbaum Associates; 1988.
 
11.
Hilbrands LB, Duivenvoorden R, Vart P, et al. COVID-19-related mortality in kidney transplant and dialysis patients: results of the ERACODA collaboration. Nephrol Dial Transplant. 2020;35(11):1973-83. https://doi.org/10.1093/ndt/gf... PMid:33151337 PMCid:PMC7665620.
 
12.
Vishnevskii K, Suchkov V. Urgency of renal replacement therapy initiation as a predictor for poor prognosis in patients with kidney disease. Nephrol Dial Transplant. 2021;36(Suppl_1):gfab098.0031. https://doi.org/10.1093/ndt/gf... PMCid:PMC8194875.
 
13.
Ozturk S, Turgutalp K, Arici M, et al. The longitudinal evolution of post–COVID-19 outcomes among hemodialysis patients in turkey. Kidney Int Rep. 2022; 7(6):1393-405. https://doi.org/10.1016/j.ekir... PMid:35350104 PMCid:PMC8949692.
 
14.
Chawki S, Buchard A, Sakhi H, et al. Long-term impact of COVID-19 among maintenance haemodialysis patients. Clin Kidney J. 2022;15(2):262-8. https://doi.org/10.1093/ckj/sf... PMid:35140935 PMCid:PMC8522382.
 
15.
Combe C, Kirsch AH, Alfano G, et al. At least 156 reasons to prioritize COVID-19 vaccination in patients receiving in-centre haemodialysis. Nephrol Dial Transplant. 2021;36(4):571-4. https://doi.org/10.1093/ndt/gf... PMid:33475137 PMCid:PMC7928652.
 
16.
Peiyao R, Mengjie Y, Xiaogang S, et al. Immunogenicity and safety of SARS-CoV-2 vaccine in hemodialysis patients: A systematic review and meta-analysis. Front Public Health. 2022;10:951096. https://doi.org/10.3389/fpubh.... PMid:36211647 PMCid:PMC9539993.
 
17.
Chen JJ, Lee TH, Tian YC, Lee CC, Fan PC, Chang CH. Immunogenicity rates after SARS-CoV-2 vaccination in people with end-stage kidney disease: A systematic review and meta-analysis. JAMA Netw Open. 2021;4(10):e2131749. https://doi.org/10.1001/jamane... PMid:34709385 PMCid:PMC8554642.
 
18.
Hsu CM, Weiner DE, Manley HJ, et al. Seroresponse to SARS-CoV-2 vaccines among maintenance dialysis patients over 6 months. Clin J Am Soc Nephrol. 2022;17(3):403-13. https://doi.org/10.2215/CJN.12... PMid:35144972 PMCid:PMC8975038.
 
19.
Bertoletti A, Tan AT, Le Bert N. The T-cell response to SARS-CoV-2: Kinetic and quantitative aspects and the case for their protective role. Oxf Open Immunol. 2021; 2(1):iqab006. https://doi.org/10.1093/oxfimm... PMid:38626271 PMCid:PMC7928654.
 
20.
Egri N, Olivé V, Hernández-Rodríguez J, et al. CoVITEST: A fast and reliable method to monitor anti-SARS-CoV-2 specific T cells from whole blood. Front Immunol. 2022; 13:848586. https://doi.org/10.3389/fimmu.... PMid:35865538 PMCid:PMC9295597.
 
21.
Schwarz M, Torre D, Lozano-Ojalvo D, et al. Rapid, scalable assessment of SARS-CoV-2 cellular immunity by whole-blood PCR. Nat Biotechnol. 2022;40(11):1680-9. https://doi.org/10.1038/s41587... PMid:35697804 PMCid:PMC10603792.
 
22.
Gonzalez-Perez M, Montes-Casado M, Conde P, et al. Development of potent cellular and humoral immune responses in long-term hemodialysis patients after 1273-mRNA SARS-CoV-2 vaccination. Front Immunol. 2022; 13:845882. https://doi.org/10.3389/fimmu.... PMid:35401504 PMCid:PMC8983822.
 
23.
Stumpf J, Siepmann T, Lindner T, et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: A prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. Lancet Reg Health Eur. 2021;9:100178. https://doi.org/10.1016/j.lane... PMid:34318288 PMCid:PMC8299287.
 
24.
Panizo N, Albert E, Giménez-Civera E, et al. Dynamics of SARS-CoV-2-Spike-reactive antibody and T-cell responses in chronic kidney disease patients within 3 months after COVID-19 full vaccination. Clin Kidney J. 2022;15(8):1562-73. https://doi.org/10.1093/ckj/sf... PMid:35880064 PMCid:PMC9047236.
 
25.
Sanders JSF, Messchendorp AL, de Vries RD, et al. Antibody and T-cell responses 6 months after coronavirus disease 2019 messenger RNA-1273 vaccination in patients with chronic kidney disease, on dialysis, or living with a kidney transplant. Clin Infect Dis. 2023;76(3):e188-99. https://doi.org/10.2139/ssrn.4....
 
26.
Cantarelli C, Angeletti A, Perin L, et al. Immune responses to SARS-CoV-2 in dialysis and kidney transplantation. Clin Kidney J. 2022;15(10):1816-28. https://doi.org/10.1093/ckj/sf... PMid:36147709 PMCid:PMC9384565.
 
27.
Hartzell S, Bin S, Cantarelli C, et al. Kidney failure associates with T Cell exhaustion and imbalanced follicular helper T cells. Front Immunol. 2020;11:583702. https://doi.org/10.3389/fimmu.... PMid:33117396 PMCid:PMC7552886.
 
28.
Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529):eabf4063. https://doi.org/10.1126/scienc... PMid:33408181 PMCid:PMC7919858.
 
29.
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861-80. https://doi.org/10.1016/j.cell... PMid:33497610 PMCid:PMC7803150.
 
30.
Pai MF, Tung KT, Hsu SP, et al. Adverse events following the first, second and third doses of a COVID-19 vaccine in hemodialysis patients. Ren Fail. 2023;45(1):2172432. https://doi.org/10.1080/088602... PMid:36715434 PMCid:PMC9888469.
 
eISSN:2516-3507
Journals System - logo
Scroll to top