ORIGINAL ARTICLE
Pain in COVID-19: Quis est culpa?
 
More details
Hide details
1
A. Getlik Clinic for Children and Adolescents SMU and UHB, Slovak Medical University in Bratislava, Bratislava, SLOVAK REPUBLIC
 
2
Department of Anesthesiology and Intensive Care, National Pirogov Memorial Medical University, Vinnytsya, UKRAINE
 
3
2nd Surgical Clinic of the Medical Faculty of Comenius University, Bratislava, SLOVAK REPUBLIC
 
4
Department of Pediatric Surgery, Slovak Medical University in Bratislava, Bratislava, SLOVAK REPUBLIC
 
 
Online publication date: 2022-11-26
 
 
Publication date: 2023-01-01
 
 
Electron J Gen Med 2023;20(1):em435
 
KEYWORDS
ABSTRACT
Background:
At present, during the coronavirus disease (COVID-19) pandemic, chronic pain is becoming more prominent, and it is also associated with the post-COVID-19 syndrome. Thanks to quick decisions on the therapy and as part of COVID-19 prevention, we have succeeded in stabilising the situation all over the world. On the other hand, ‘quick decisions’ have contributed to other significant issues which we are beginning to deal with now: in the effort to defeat the virus, many experts regarded the adverse effects of the medications used to be of secondary importance.

Purpose:
The article aims to demonstrate the side effects of treatment with various drugs (and their combinations) that are used to treat COVID-19 disease.

Method:
From the beginning of January until mid-May, the COVID-19 department of the 2nd Surgical Clinic of the Faculty of Medicine of the Comenius University in Bratislava (University Hospital Bratislava, Hospital of Saints Cyril and Methodius) treated 221 patients with moderate and severe course of COVID-19 (2nd wave of the pandemic). We saw some adverse effects and lack of effect of certain drugs for COVID-19.

Results:
The benefits of preventive measures compared to treatment are enormous. For example, corticoids can impair metabolism, cause diabetes, or suppress immunity. Antibiotics may cause colitis and blood pressure medications may negatively impact blood circulation.

Conclusion:
Preventive measures such as vaccination and activation of intrinsic antiviral immune systems are based on an incomparable benefit. Important in the process of the activation of antiviral immunity (linked to interferon synthesis) in the prevention of COVID-19 is the improvement of vitamin D deficit and the use of other micronutrients.

Practical value:
The results of the study will be valuable in the field of medicine, for virologists, pharmacologists, pharmacists, and medical professionals.

REFERENCES (51)
1.
Dobrovanov O, Furková K, Vidiščák M, Húšťavová L. Multisystémový zápalový syndróm u detí spojený s COVID-19/SARS-CoV-2, napodobňujúci Kawasakiho chorobu (Kawa-COVID-19) [Multisystem inflammatory syndrome in children associated with COVID-19/SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19)]. Pediatria (Bratisl.). 2020;15(5):300-3.
 
2.
Dmytriiev D, Dobrovanov O. Post-COVID-19 pain syndrome. Anaesth Pain Intensive Care. 2021;25(4):505-12.
 
3.
Dobrovanov O, Furková K. Pandémia COVID-19: Ochranné úlohy vitamínu D [The COVID-19 pandemic: Protective roles of vitamin D]. MEDICUS News. 2021;3:42-4.
 
4.
Kaur SP, Gupta V. COVID-19 vaccine: A comprehensive status report. Virus Res. 2020;288:198114. https://doi.org/10.1016/j.viru... PMid:32800805 PMCid:PMC7423510.
 
5.
Kralinsky K, Pisarchikova M, Dobrovanov O, Babela R. Protocol for the diagnosis, management, and treatment of pediatric patients with COVID-19 according to the recommendations of the Slovakian Pediatric Society. Rossijskij Vestnik Perinatologii i Pediatrii [Russ Bull Perinatol Pediatrics.]. 2020;65(5):93-9. https://doi.org/10.21508/1027-....
 
6.
Rana R, Tripathi A, Kumar N, Ganguly NK. A comprehensive overview on COVID-19: Future perspectives. Front Cell Infect Microbiol. 2021;11:744903. https://doi.org/10.3389/fcimb.... PMid:34595136 PMCid:PMC8476999.
 
7.
Zhou F, Yu T, Du R, Fan G, Liu Y. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-....
 
8.
MATH+ Hospital Treatment Protocol for COVID-19. 2021. Available at: https://covid19criticalcare.co... (Accessed 29 August 2022).
 
9.
I-MASK+ Prophylaxis and Early Outpatient Treatment Protocol for COVID-19. 2022. Available at: https://covid19criticalcare.co... (Accessed 29 August 2022).
 
10.
An overview of the MATH+, I-MASK+ and I-RECOVER Protocols: A Guide to the Management of COVID-19. 2022. Available at: https://covid19criticalcare.co... (Accessed 29 August 2022).
 
11.
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020;17(12):e1003501. https://doi.org/10.1371/journa... PMid:33378357 PMCid:PMC7794037.
 
12.
RECOVERY (Randomised Evaluation of COVID-19 Therapy). 2022. Available at: https://www.recoverytrial.net/... (Accessed 29 August 2022).
 
13.
Robinson R, Prakash V, Al Tamimi R, Albast, N., Al-Bast, B. Impact of systemic corticosteroids on hospitalized patients with COVID-19: January 2021 meta-analysis of randomized controlled trials. 2021. Available at: https://doi.org/10.1101/2021.0... (Accessed 29 August 2022).
 
14.
Edalatifard M, Akhtari M, Salehi M, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: Results from a randomised controlled clinical trial. Eur Respir J. 2020;56(6):2002808. https://doi.org/10.1183/139930... PMid:32943404 PMCid:PMC7758541.
 
15.
Buchman AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33(4):289-94. https://doi.org/10.1097/000048... PMid:11588541.
 
16.
Ference JD, Last AR. Choosing topical corticosteroids. Am Fam Physician. 2009;79(2):135-40.
 
17.
Kalra RS, Tomar D, Meena AS, Kandimalla R. SARS-CoV-2, ACE2, and hydroxychloroquine: Cardiovascular complications, therapeutics, and clinical readouts in the current settings. Pathogens. 2020;9(7):546. https://doi.org/10.3390/pathog... PMid:32645974 PMCid:PMC7400328.
 
18.
Nina PB, Dash AP. Hydroxychloroquine as prophylaxis or treatment for COVID-19: What does the evidence say? Indian J Public Health. 2020;64(Suppl):125-7. https://doi.org/10.4103/ijph.I... PMid:32496241.
 
19.
MacLennan S, Barbara AJ. Risks and side effects of therapy with plasma and plasma fractions. Best Pract Res Clin Haematol. 2006;19(1):169-89. https://doi.org/10.1016/j.beha... PMid:16377549.
 
20.
Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020;117(17):9490-6. https://doi.org/10.1073/pnas.2... PMid:32253318 PMCid:PMC7196837.
 
21.
Furková K, Dobrovanov O. Metabolizmus, účinky a suplementácia vitamínu D [Vitamin D metabolism, effects and supplementation]. Pediatria (Bratisl.). 2020;15(6):351-6.
 
22.
Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, Płudowski P, Jones G. Vitamin D toxicity–A clinical perspective. Front Endocrinol (Lausanne). 2018;9:550. https://doi.org/10.3389/fendo.... PMid:30294301 PMCid:PMC6158375.
 
23.
Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: A review of case reports. Nutrients. 2018;10(8):953. https://doi.org/10.3390/nu1008... PMid:30042334 PMCid:PMC6115827.
 
24.
De Vincentis S, Russo A, Milazzo M, et al. How much vitamin D is too much? A case report and review of the literature. Endocr Metab Immune Disord Drug Targets. 2021;21(9):1653-9. https://doi.org/10.2174/187153... PMid:33030138 PMCid:PMC8811610.
 
25.
Hiedra R, Lo KB, Elbashabsheh M, et al. The use of IV vitamin C for patients with COVID-19: A case series. Expert Rev Anti Infect Ther. 2020;18(12):1259-61. https://doi.org/10.1080/147872... PMid:32662690 PMCid:PMC7441798.
 
26.
Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov. 2020;5:100028. https://doi.org/10.1016/j.medi... PMid:32328576 PMCid:PMC7167497.
 
27.
McHugh GJ, Graber ML, Freebairn RC. Fatal vitamin C-associated acute renal failure. Anaesth Intensive Care. 2008;36(4):585-8. https://doi.org/10.1177/031005... PMid:18714631.
 
28.
Singh R, Sripada L, Singh R. Side effects of antibiotics during bacterial infection: Mitochondria, the main target in host cell. Mitochondrion. 2014;16:50-4. https://doi.org/10.1016/j.mito... PMid:24246912.
 
29.
Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149-85. https://doi.org/10.1016/s0025-....
 
30.
Westphal JF, Vetter D, Brogard JM. Hepatic side-effects of antibiotics. J Antimicrob Chemother. 1994;33(3):387-401. https://doi.org/10.1093/jac/33... PMid:8040106.
 
31.
Kritikos A, Zanella MC, Huttner B, Boillat-Blanco N. [Side effects of selected antibiotics, not to be missed!] Rev Med Suisse. 2020;16(690):719-23. https://doi.org/10.53738/REVME... PMid:32301305.
 
32.
Tsai WC, Yang YM. Fluoroquinolone-associated tendinopathy. Chang Gung Med J. 2011;34(5):461-7.
 
33.
Boes J, Dofferhoff ASM, Fleuren HWHA, Kramers C. [Serious side effects of fluoroquinolones: Low risk of connective tissue-related disorders such as aneurysms]. Ned Tijdschr Geneeskd. 2020;164:D4868.
 
34.
Bennett AC, Bennett CL, Witherspoon BJ, Knopf KB. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/dissections disseminated by the Food and Drug Administration and the European Medicines Agency. Expert Opin Drug Saf. 2019;18(11):1055-63. https://doi.org/10.1080/147403... PMid:31500468.
 
35.
Richards GA, Brink AJ, Feldman C. Rational use of the fluoroquinolones. S Afr Med J. 2019;109(6):378-81. https://doi.org/10.7196/SAMJ.2... PMid:31266554.
 
36.
Thomas SJ, Moreira Jr ED, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. Vaccine through 6 months. N Engl J Med. 2021;385(19):1761-73. https://doi.org/10.1056/NEJMoa... PMid:33301246 PMCid:PMC7745181.
 
37.
Riad A. Oral side effects of COVID-19 vaccine. Br Dent J. 2021;230(2):59. https://doi.org/10.1038/s41415... PMid:33483637 PMCid:PMC7821459.
 
38.
Fernandes A, Chaudhari S, Jamil N, Gopalakrishnan G. COVID-19 vaccine. Endocr Pract. 2021;27(2):170-2. https://doi.org/10.1016/j.epra... PMid:33515760 PMCid:PMC7839427.
 
39.
Kantor IN. The biosecurity of COVID-19 vaccines. Medicina (B Aires). 2020;80(6Suppl):104-6.
 
40.
Dmytriiev D, Dobrovanov O, Kralinsky K, Babela R. Adaptive supportive ventilation in a child with coronavirus pneumonia and diabetes mellitus. Rossijskij Vestnik Perinatologii i Pediatrii [Russ Bull Perinatol Pediatrics.]. 2020;65(5):66-72. https://doi.org/10.21508/1027-....
 
41.
Dmytriiev D, Dobrovanov O, Kralinsky K, Dmytriiev K, Melnychenko M. A case report of successful experience of using adaptive support ventilation in the pediatric patient with viral interstitial pneumonia COVID-19 positive. Lekársky Obzor [Med Rev.]. 2021;70(3):119-23.
 
42.
Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P. Ventilator-related causes of lung injury: The mechanical power. Intensive Care Med. 2016;42(10):1567-75. https://doi.org/10.1007/s00134... PMid:27620287.
 
43.
Tobin M, Manthous C. Mechanical ventilation. Am J Respir Crit Care Med. 2017;196(2):P3-4. https://doi.org/10.1164/rccm.1... PMid:28707967.
 
44.
Lohser J, Slinger P. Lung injury after one-lung ventilation: A review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung. Anesth Analg. 2015;121(2):302-18. https://doi.org/10.1213/ANE.00... PMid:26197368.
 
45.
Nishimura M. High-flow nasal cannula oxygen therapy in adults: Physiological benefits, indication, clinical benefits, and adverse effects. Respir Care. 2016;61(4):529-41. https://doi.org/10.4187/respca... PMid:27016353.
 
46.
Nimmagadda U, Salem MR, Crystal GJ. Preoxygenation: Physiologic basis, benefits, and potential risks. Anesth Analg. 2017;124(2):507-17. https://doi.org/10.1213/ANE.00... PMid:28099321.
 
47.
Thomson L, Paton J. Oxygen toxicity. Paediatr Respir Rev. 2014;5(2):120-3. https://doi.org/10.1016/j.prrv... PMid:24767867.
 
48.
Dobrovanov O, Králinský K. Kardiovaskulárne riziká COVID-19 u detských pacientov: PIMS-TS/MIS-C [Cardiovascular risks of COVID-19 in pediatric patients: PIMS-TS/MIS-C]. 2021. Available at: https://lekarskenoviny.sk/wp-c... (Accessed 29 August 2022).
 
49.
Dobrovanov O, Dmytriiev D, Dmytriieva K, Hustavova L. Difficulties in Kawasaki disease diagnosis and treatment in children. Rossijskij Vestnik Perinatologii i Pediatrii [Russ Bull Perinatol Pediatrics.]. 2020;65(6):122-8. https://doi.org/10.21508/1027-....
 
50.
Sultonov NN, Sabirov MO, Tashpulatova MH, Maksudova LI. Evaluating the effectiveness of antiplatelet therapy of the patients with kidney disease. International Journal of Research in Pharmaceutical Sciences. 2020;11(4):6033-8. https://doi.org/10.26452/ijrps....
 
51.
Lokshin VN, Sharman AT, Mirzakhmetova DD, Terlikbaeva AT, Aimbetova AR, Karibaeva SK, Urazymbetova KA. The modern organizational principles of specialized medical care for pregnant and puerperant women during the coronavirus pandemic in the republic of Kazakhstan. Akusherstvo i Ginekologiya (Russian Federation). 2020;2020(12):34-43. https://doi.org/10.18565/aig.2....
 
eISSN:2516-3507
Journals System - logo
Scroll to top