ORIGINAL ARTICLE
Prevalence of multidrug resistance pathogens in dermatology: A retrospective study in Romania, 2018-2022
 
More details
Hide details
1
Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, ROMANIA
 
2
Clinical Hospital of Infectious Diseases “Sf. Cuvioasa Parascheva”, Galați, ROMANIA
 
3
Research Laboratory of Microbiology, Imunology and Clinical Application of Infections Diseases, “Dunărea de Jos” University, Galați, ROMANIA
 
4
Clinical Hospital of Children Hospital “Sf. Ioan”, Galați, ROMANIA
 
5
Research Center in Medical-Pharmaceutical Field, “Dunărea de Jos” University, Galați, ROMANIA
 
6
Multidisciplinary Integrated Center of Dermatological Interface Research Center, “Dunărea de Jos” University, Galați, ROMANIA
 
 
Publication date: 2024-05-06
 
 
Electron J Gen Med 2024;21(3):em582
 
KEYWORDS
ABSTRACT
Antimicrobial resistance (AMR) is now a major challenge to clinicians in treating patients. The purpose of our study was to determine the incidence of multidrug resistant(MDR) strains and antibiotic resistance profile in department of dermatology-venereology from a Romanian infectious disease’s hospital. We analyzed 1,152 bacterial strains, we obtained 34.5% MDR strains, identifying the following species: staphylococcus aureus 43.6%, enterococcus spp 16.7%, escherichia coli 31.0%, proteus spp 27.1%, klebsiella spp. 22.4%, pseudomonas spp. 34.8%. Overall, the rate of methicillin-resistant staphylococcus aureus was 76.1%; extended spectrum beta-lactamase production was 46.1% for escherichia coli and 66.0% for klebsiella pneumoniae; carbapenems-resistance was 51.0% for pseudomonas aeruginosa. All strains of E. coli and klebsiella were sensitive to meropenem. Our results confirm the high level of AMR, and continuous monitoring is essential for updating the local diagnostic and treatment protocols for dermatological infections.
REFERENCES (53)
1.
Shah RA, Hsu JI, Patel RR, Mui UN, Tyring SK. Antibiotic resistance in dermatology: The scope of the problem and strategies to address it. J Am Acad Dermatol. 2022; 86(6):1337-45. https://doi.org/10.1016/j.jaad... PMid:34555484.
 
2.
George S, Muhaj FF, Nguyen CD, Tyring SK. Part I antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. J Am Acad Dermatol. 2022;86(6):1189-204. https://doi.org/10.1016/j.jaad... PMid:35122894 PMCid:PMC8808428.
 
3.
Canton R, Gijon D, Ruiz-Garbajosa P. Antimicrobial resistance in ICUs: An update in the light of the COVID-19 pandemic. Curr Opin Crit Care. 2020;26(5):433-41. https://doi.org/10.1097/MCC.00... PMid:32739970.
 
4.
Ghosh S, Bornman C, Zafer MM. Antimicrobial resistance threats in the emerging COVID-19 pandemic: Where do we stand? J Infect Public Health. 2021;14(5):555-60. https://doi.org/10.1016/j.jiph... PMid:33848884 PMCid:PMC7934675.
 
5.
Founou RC, Blocker AJ, Noubom M, et al. The COVID-19 pandemic: A threat to antimicrobial resistance containment. Future Sci OA. 2021;7(8):FSO736. https://doi.org/10.2144/fsoa-2... PMid:34290883 PMCid:PMC8204817.
 
6.
Lai C-C, Chen S-Y, Ko W-C, Hsueh P-R. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021;57(4):106324. https://doi.org/10.1016/j.ijan... PMid:33746045 PMCid:PMC7972869.
 
7.
Gatt YE, Margalit H. Common adaptive strategies underlie within-host evolution of bacterial pathogens. Mol Biol Evol. 2021;38(3):1101-21. https://doi.org/10.1093/molbev... PMid:33118035 PMCid:PMC7947768.
 
8.
Tang KWK, Millar BC, Moore JE. Antimicrobial resistance (AMR). Br J Biomed Sci. 2023;80:11387. https://doi.org/10.3389/bjbs.2... PMid:37448857 PMCid:PMC10336207.
 
9.
Arbune M, Gurau G, Niculet E, et al. Prevalence of antibiotic resistance of ESKAPE pathogens over five years in an infectious diseases hospital from South-East of Romania. Infect Drug Resist. 2021:14:2369-78. https://doi.org/10.2147/IDR.S3... PMid:34194233 PMCid:PMC8238535.
 
10.
Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States: 2019. U.S. Department of Health and Human Services; 2019. Available at: https://www.cdc.gov/drugresist... (Accessed: 18 December 2023).
 
11.
WHO. New report calls for urgent action to avert antimicrobial resistance crisis: International organizations unite on critical recommendations to combat drug-resistant infections and prevent staggering number of deaths each year. World Health Organization; 2023. Available at: https://www.who.int/news/item/... (Accessed: 18 December 2023).
 
12.
Murray C. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399(10325):629-55. https://doi.org/10.1016/S0140-... PMid:35065702.
 
13.
Sanchez GV, Fleming-Dutra KE, Roberts RM, Hicks LA. Core elements of outpatient antibiotic stewardship. MMWR Recomm Rep. 2016;65(No. RR-6):1-12. https://doi.org/10.15585/mmwr.... PMid:27832047.
 
14.
Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010-2011. JAMA. 2016;315(17):1864-73. https://doi.org/10.1001/jama.2... PMid:27139059.
 
15.
CDC. Outpatient antibiotic prescriptions–United States. Centers for Disease Control and Prevention; 2017. Available at: https://www.cdc.gov/antibiotic... (Accessed: 14 July 2023).
 
16.
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. https://doi.org/10.1155/2016/2... PMid:27274985 PMCid:PMC4871955.
 
17.
Sarshar M, Behzadi P, Scribano D, Palamara AT, Ambrosi C. Acinetobacter baumannii: An ancient commensal with weapons of a pathogen. Pathogens. 2021;10(4):387. https://doi.org/10.3390/pathog... PMid:33804894 PMCid:PMC8063835.
 
18.
Senobar TSA, Stájer A, Barrak I, Ostorházi E, Szabó D, Gajdács M. Correlation between biofilm-formation and the antibiotic resistant phenotype in staphylococcus aureus isolates: A laboratory-based study in Hungary and a review of the literature. Infect Drug Resist. 2021;14:1155-68. https://doi.org/10.2147/IDR.S3... PMid:33790586 PMCid:PMC8001189.
 
19.
Juhász J, Ligeti B, Gajdács M, et al. Colonization dynamics of multidrug-resistant klebsiella pneumoniae are dictated by microbiota-cluster group behavior over individual antibiotic susceptibility: A metataxonomic analysis. Antibiotics (Basel). 2021;10(3):268. https://doi.org/10.3390/antibi... PMid:33800048 PMCid:PMC8001907.
 
20.
Behzadi P, Barth Z, Gajdács M. It’s not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant pseudomonas aeruginosa. Antibiotics (Basel). 2021; 10(1):42. https://doi.org/10.3390/antibi... PMid:33406652 PMCid:PMC7823828.
 
21.
Gajdács M, Bator Z, Ábrók M, Lázár A, Burián K. Characterization of resistance in gram-negative urinary isolates using existing and novel indicators of clinical relevance: A 10-year data analysis. Life (Basel). 2020;10(2): 16. https://doi.org/10.3390/life10... PMid:32054054 PMCid:PMC7175163.
 
22.
Tatu AL, Nwabudike LC. Rosacea-like demodicosis (but not primary demodicosis) and papulo pustular rosacea may be two phenotypes of the same disease–A microbioma, therapeutic and diagnostic tools perspective. J Eur Acad Dermatol Venereol. 2019;33(1):e46-7. https://doi.org/10.1111/jdv.15....
 
23.
Pricop R, Cristea VC, Gheorghe I, Tatu AL, Mihaescu G, Chifiriuc MC. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) reveals the anaerobic Slakia exigua as unique etiology of a dental abscess. Biointerface Res Appl Chem. 2017;7(2):1995-7.
 
24.
ECDPC. Antimicrobial resistance in the EU/EEA (EARS-Net) - annual epidemiological report for 2021. European Center for Disease Prevention and Control; 2023. Available at: https://www.ecdc.europa.eu/en/... (Accessed: 18 December 2023).
 
25.
WHO. Global action plan on antimicrobial resistance, 2015. World Health Organization; 2023. Available at: https://www.who.int/antimicrob... (Accessed: 18 December 2023).
 
26.
Procop GW, Church DL, Hall GS, Janda WM. Koneman’s color atlas and textbook of diagnostic microbiology. Philadelphia (PA): Lippincott Williams &Wilkins; 2017.
 
27.
CLSI. Performance standards for antimicrobial susceptibility testing: 28th informational supplement. Clinical and Laboratory Standards Institute; 2018. Available at: https://clsi.org/media/2663/m1... (Accessed: 18 December 2023).
 
28.
CLSI. Performance standards for antimicrobial susceptibility testing: 29th informational supplement. Clinical and Laboratory Standards Institute; 2019. Available at: https://clsi.org/media/2663/m1... (Accessed: 18 December 2023).
 
29.
CLSI. Performance standards for antimicrobial susceptibility testing: 30th informational supplement. Clinical and Laboratory Standards Institute; 2020. Available at: https://clsi.org/media/3481/m1... (Accessed: 18 December 2023).
 
30.
CLSI. Performance standards for antimicrobial susceptibility testing: 31st informational supplement. Clinical and Laboratory Standards Institute; 2021. Available at: https://clsi.org/media/z2uhcbm... (Accessed: 18 December 2023).
 
31.
CLSI. Performance standards for antimicrobial susceptibility testing: 32nd informational supplement. Clinical and Laboratory Standards Institute; 2022. Available at: https://clsi.org/media/z2uhcbm... (Accessed: 18 December 2023).
 
32.
Gashaw M, Berhane M, Bekele S, et al. Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University Medical Center: A cross sectional study. Antimicrob Resist Infect Control. 2018;7:138. https://doi.org/10.1186/s13756... PMid:30479751 PMCid:PMC6245755.
 
33.
ECDPC. Antimicrobial resistance surveillance in Europe 2022. European Centre for Disease Prevention and Control; 2022. Available at: https://www.ecdc.europa.eu/en/... (Accessed: 18 December 2023).
 
34.
Basak S, Singh P, Rajurkar M. Multidrug resistant and extensively drug resistant bacteria: A study. J Pathog. 2016;2016:4065603. https://doi.org/10.1155/2016/4... PMid:26942013 PMCid:PMC4749793.
 
35.
ECDPC. Antimicrobial resistance surveillance in Europe. European Centre for Disease Prevention and Control; 2021. Available at: https://www.ecdc.europa.eu/en/... (Accessed: 18 December 2023).
 
36.
Lee AS, de Lencastre H, Garau J, et al. Methicillin-resistant staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033. https://doi.org/10.1038/nrdp.2... PMid:29849094.
 
37.
Linz M, Mattappallil A, Finkel D, Parker D. Clinical impact of staphylococcus aureus skin and soft tissue infections. Antibiotics (Basel). 2023;12(3):557. https://doi.org/10.3390/antibi... PMid:36978425 PMCid:PMC10044708.
 
38.
Kali A. Antibiotics and bioactive natural products in treatment of methicillin resistant staphylococcus aureus: A brief review. Pharmacogn Rev. 2015;9(17):29-34. https://doi.org/10.4103/0973-7... PMid:26009690 PMCid:PMC4441159.
 
39.
Koulenti D, Xu E, Mok IYS, et al. Novel antibiotics for multidrug-resistant Gram-positive microorganisms. Microorganisms. 2019;7(8):270. https://doi.org/10.3390/microo... PMid:31426596 PMCid:PMC6723731.
 
40.
Russo A, Concia E, Cristini F, et al. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin Microbiol Infect. 2016;22 Suppl 2:S27-36. https://doi.org/10.1016/S1198-... PMid:27125562.
 
41.
CDCP. Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention; 2019. Available at: https://www.cdc.gov/drugresist... (Accessed: 18 December 2023).
 
42.
Popescu GA, Șerban R, Niculcea A, Leuștean M, Pistol A. Consumul de antibiotice, rezistența microbiană și infecții asociate asistenței medicale în România [Antibiotic consumption, microbial resistance and healthcare-associated infections in Romania]. National Institute of Public Health; 2019. Available at: https://www.cnscbt.ro/index.ph... (Accessed: 18 December 2023).
 
43.
O’Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217-30. https://doi.org/10.2147/IDR.S5... PMid:26244026 PMCid:PMC4521680.
 
44.
Iancu A-V, Arbune M, Zaharia E-A, et al. Prevalence and antibiotic resistance of enterococcus spp.: A retrospective study in hospitals of Southeast Romania. Appl Sci. 2023;13(6):3866. https://doi.org/10.3390/app130....
 
45.
Yim J, Smith JR, Rybak MJ. Role of combination antimicrobial therapy for vancomycin-resistant enterococcus faecium infections: Review of the current evidence. Pharmacotherapy. 2017;37(5):579-92. PMid:28273381.
 
46.
Amin M, Sirous M, Javaherizadeh H, et al. Antibiotic resistance pattern and molecular characterization of extended-spectrum β-lactamase producing enteroaggregative escherichia coli isolates in children from southwest Iran. Infect Drug Resist. 2018;11:1097-104. https://doi.org/10.2147/IDR.S1... PMid:30127627 PMCid:PMC6089113.
 
47.
Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. P T. 2015;40(4):277-83.
 
48.
Nguyen L, Garcia J, Gruenberg K, MacDougall C. Multidrug-resistant pseudomonas infections: Hard to treat, but hope on the horizon? Curr Infect Dis Rep. 2018;20(8):23. https://doi.org/10.1007/s11908... PMid:29876674.
 
49.
Hwang W, Yoon SS. Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant pseudomonas aeruginosa. Sci Rep. 2019;9(1):487. https://doi.org/10.1038/s41598... PMid:30679735 PMCid:PMC6345838.
 
50.
Ruiz-Garbajosa P, Canton R. Epidemiology of antibiotic resistance in pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter. 2017;30 Suppl 1:8-12.
 
51.
Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. https://doi.org/10.7573/dic.21... PMid:29872449 PMCid:PMC5978525.
 
52.
Cattoir V, Felden B. Future antibacterial strategies: From basic concepts to clinical challenges. J Infect Dis. 2019;220(3):350-60. https://doi.org/10.1093/infdis... PMid:30893436.
 
53.
Barbieri JS, Bhate K, Hartnett KP, Fleming-Dutra KE, Margolis DJ. Trends in oral antibiotic prescription in dermatology, 2008 to 2016. JAMA Dermatol. 2019;155(3): 290-7. https://doi.org/10.1001/jamade... PMid:30649187 PMCid:PMC6439939.
 
eISSN:2516-3507
Journals System - logo
Scroll to top