ORIGINAL ARTICLE
Relation between homocysteine-to-adropin ratio and severity of coronary artery disease
 
More details
Hide details
1
Department of Cardiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGYPT
 
2
Department of Endocrinology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGYPT
 
3
Endocrinology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
 
4
Department of Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGYPT
 
5
Department of Clinical Pathology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGYPT
 
6
Department of Cardiology, Faculty of Medicine, October 6 University, October 6 City, EGYPT
 
 
Online publication date: 2023-12-06
 
 
Publication date: 2024-01-01
 
 
Electron J Gen Med 2024;21(1):em556
 
KEYWORDS
ABSTRACT
Purpose:
This study aimed to uncoverif homocysteine (Hcy) adropin balance expressed by homocysteine/adropin ratio (HAR) is related to severity of disease in coronary artery disease (CAD) patients.

Material & Methods:
The present cross-sectional study 50 consecutive patients with low/intermediate CAD severity and other 50 patients with severe CAD. Hcy and adropin levels were assessed using commercially available kits.

Results:
Patients with low/moderate severity CAD expressed significantly lower HAR. According to HAR, all patients were classified into those with low HAR (
Conclusions:
Hcy and adropin levels are interlinked, HAR can effectively distinguish severe from non-severe CAD.
REFERENCES (32)
1.
Duggan JP, Peters AS, Trachiotis GD, Antevil JL. Epidemiology of coronary artery disease. Surg Clin North Am. 2022;102(3):499-516. https://doi.org/10.1016/j.suc.... PMid:35671770.
 
2.
Pruthi S, Siddiqui E, Smilowitz NR. Beyond coronary artery disease: Assessing the microcirculation. Interv Cardiol Clin. 2023;12(1):119-29. https://doi.org/10.1016/j.iccl... PMid:36372455.
 
3.
Zhou J, Liu C, Zhou P, et al. Prevalence and impact of metabolic syndrome in patients with multivessel coronary artery disease and acute coronary syndrome. Nutr Metab Cardiovasc Dis. 2021;31(9):2693-9. https://doi.org/10.1016/j.nume... PMid:34344543.
 
4.
Jing Z, Liu L, Shi Y, et al. Association of coronary artery disease and metabolic syndrome: Usefulness of serum metabolomics approach. Front Endocrinol (Lausanne). 2021;12:692893. https://doi.org/10.3389/fendo.... PMid:34630321 PMCid:PMC8498335.
 
5.
Su Y, Zhang X. Association of metabolic syndrome with adverse outcomes in patients with stable coronary artery disease: A meta-analysis. Horm Metab Res. 2023;55(2):96-102. https://doi.org/10.1055/a-1946... PMid:36113500.
 
6.
Dai W, Zhang Z, Yao C, Zhao S. Emerging evidences for the opposite role of apolipoprotein C3 and apolipoprotein A5 in lipid metabolism and coronary artery disease. Lipids Health Dis. 2019;18(1):220. https://doi.org/10.1186/s12944... PMid:31836003 PMCid:PMC6909560.
 
7.
Zhang HW, Jin JL, Cao YX, et al. Prognostic utility of heart-type fatty acid-binding protein in patients with stable coronary artery disease and impaired glucose metabolism: A cohort study. Cardiovasc Diabetol. 2020;19(1):15. https://doi.org/10.1186/s12933... PMid:32041617 PMCid:PMC7011523.
 
8.
Gander J, Carrard J, Gallart-Ayala H, et al. Metabolic impairment in coronary artery disease: Elevated serum acylcarnitines under the spotlights. Front Cardiovasc Med. 2021;8:792350. https://doi.org/10.3389/fcvm.2... PMid:34977199 PMCid:PMC8716394.
 
9.
Tian R, Liu HH, Feng SQ, et al. Gut microbiota metabolic characteristics in coronary artery disease patients with hyperhomocysteine. J Microbiol. 2022;60(4):419-28. https://doi.org/10.1007/s12275... PMid:35246806.
 
10.
Rehman T, Shabbir MA, Inam-Ur-Raheem M, et al. Cysteine and homocysteine as biomarker of various diseases. Food Sci Nutr. 2020;8(9):4696-707. https://doi.org/10.1002/fsn3.1... PMid:32994931 PMCid:PMC7500767.
 
11.
Onozato M, Uta A, Magarida A, et al. Alterations in methionine to homocysteine ratio in individuals with first-episode psychosis and those with at-risk mental state. Clin Biochem. 2020;77:48-53. https://doi.org/10.1016/j.clin... PMid:31843665.
 
12.
Choi JW, Lee MH, Fujii T, Fujii N, Moon Y. Association of the urine homocysteine/creatinine ratio to proinflammatory cytokine, natural anticoagulant, and nitric oxide levels in cerebrovascular disease. Ann Clin Lab Sci. 2014;44(4):461-5.
 
13.
Hortin GL, Sullivan P, Csako G. Relationships among plasma homocysteine, cysteine, and albumin concentrations: Potential utility of assessing the cysteine/homocysteine ratio. Clin Chem. 2001;47(6):1121-4. https://doi.org/10.1093/clinch... PMid:11375307.
 
14.
Yuan D, Chu J, Lin H, et al. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med. 2023;9:1109445. https://doi.org/10.3389/fcvm.2... PMid:36727029 PMCid:PMC9884709.
 
15.
Bajic Z, Sobot T, Skrbic R, et al. Homocysteine, vitamins B6 and folic acid in experimental models of myocardial infarction and heart failure-how strong is that link? Biomolecules. 2022;12(4):536. https://doi.org/10.3390/biom12... PMid:35454125 PMCid:PMC9027107.
 
16.
Koklesova L, Mazurakova A, Samec M, et al. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021;12(4):477-505. https://doi.org/10.1007/s13167... PMid:34786033 PMCid:PMC8581606.
 
17.
Ali II, D’Souza C, Singh J, Adeghate E. Adropin’s role in energy homeostasis and metabolic disorders. Int J Mol Sci. 2022;23(15):8318. https://doi.org/10.3390/ijms23... PMid:35955453 PMCid:PMC9369016.
 
18.
Kolben Y, Weksler-Zangen S, Ilan Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes Rev. 2021;22(2):e13108. https://doi.org/10.1111/obr.13... PMid:32720402.
 
19.
Zhang S, Chen Q, Lin X, Chen M, Liu Q. A review of adropin as the medium of dialogue between energy regulation and immune regulation. Oxid Med Cell Longev. 2020;2020:3947806. https://doi.org/10.1155/2020/3... PMid:32190172 PMCid:PMC7073478.
 
20.
Mushala BAS, Scott I. Adropin: A hepatokine modulator of vascular function and cardiac fuel metabolism. Am J Physiol Heart Circ Physiol. 2021;320(1):H238-44. https://doi.org/10.1152/ajphea... PMid:33216612 PMCid:PMC7847067.
 
21.
Zhao LP, You T, Chan SP, Chen JC, Xu WT. Adropin is associated with hyperhomocysteine and coronary atherosclerosis. Exp Ther Med. 2016;11(3):1065-70. https://doi.org/10.3892/etm.20... PMid:26998038 PMCid:PMC4774467.
 
22.
Bozic J, Kumric M, Ticinovic Kurir T, et al. Role of adropin in cardiometabolic disorders: From pathophysiological mechanisms to therapeutic target. Biomedicines. 2021;9(10):1407. https://doi.org/10.3390/biomed... PMid:34680524 PMCid:PMC8533182.
 
23.
Koller A, Szenasi A, Dornyei G, Kovacs N, Lelbach A, Kovacs I. Coronary microvascular and cardiac dysfunction due to homocysteine pathometabolism: A complex therapeutic design. Curr Pharm Des. 2018;24(25):2911-20. https://doi.org/10.2174/138161... PMid:29938610.
 
24.
Djuric D, Jakovljevic V, Zivkovic V, Srejovic I. Homocysteine and homocysteine-related compounds: An overview of the roles in the pathology of the cardiovascular and nervous systems. Can J Physiol Pharmacol. 2018;96(10):991-1003. https://doi.org/10.1139/cjpp-2... PMid:30130426.
 
25.
Esse R, Barroso M, Tavares de Almeida I, Castro R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-art. Int J Mol Sci. 2019;20(4):867. https://doi.org/10.3390/ijms20... PMid:30781581 PMCid:PMC6412520.
 
26.
López V, Uribe E, Moraga FA. Activation of arginase II by asymmetric dimethylarginine and homocysteine in hypertensive rats induced by hypoxia: A new model of nitric oxide synthesis regulation in hypertensive processes? Hypertens Res. 2021;44(3):263-75. https://doi.org/10.1038/s41440... PMid:33149269.
 
27.
Paradis JM, White JM, Généreux P, et al. Impact of coronary artery disease severity assessed with the SYNTAX score on outcomes following transcatheter aortic valve replacement. J Am Heart Assoc. 2017;6(2):e005070. https://doi.org/10.1161/JAHA.1... PMid:28219920 PMCid:PMC5523783.
 
28.
Cazac GD, Lăcătușu CM, Mihai C, et al. New insights into non-alcoholic fatty liver disease and coronary artery disease: The liver-heart axis. Life (Basel). 2022;12(8):1189. https://doi.org/10.3390/life12... PMid:36013368 PMCid:PMC9410285.
 
29.
Sato K, Yamashita T, Shirai R, t al. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci. 2018;19(5):1293. https://doi.org/10.3390/ijms19... PMid:29701665 PMCid:PMC5983814.
 
30.
Chen X, Xue H, Fang W, et al Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity. Redox Biol. 2019;21:101068. https://doi.org/10.1016/j.redo... PMid:30684890 PMCid:PMC6351233.
 
31.
Thapa D, Xie B, Zhang M, et al. Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. J Mol Cell Cardiol. 2019;129:174-8. https://doi.org/10.1016/j.yjmc... PMid:30822408 PMCid:PMC6486841.
 
32.
Li H, Hu D, Chen G, et al. Adropin-based dual treatment enhances the therapeutic potential of mesenchymal stem cells in rat myocardial infarction. Cell Death Dis. 2021; 12(6):505. https://doi.org/10.1038/s41419... PMid:34006853 PMCid:PMC8131743.
 
eISSN:2516-3507
Journals System - logo
Scroll to top