ORIGINAL ARTICLE
The Hepatoprotective Capacity of Steeping kersen Leaves (Muntingia calabura L.) on Diabetic Rat
 
More details
Hide details
1
Department of Physiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta. Jl. Brawijaya, Tamantirto, Kasihan, Bantul, Yogyakarta, INDONESIA
 
 
Online publication date: 2020-04-05
 
 
Publication date: 2020-04-05
 
 
Electron J Gen Med 2020;17(5):em225
 
KEYWORDS
ABSTRACT
Background:
Diabetes Mellitus is a degenerative disease that causes many complications in which blood glucose levels and oxidative stress increase that can cause liver damage and characterized by the increase in liver enzymes namely SGOT and SGPT. Kersen (Muntingia calabura L.) is one kind of plants that has antioxidant activity because it contains flavonoids to prevent oxidative stress.

Methods:
This study was an experimental research study design with pre and posttest control design. Thirty Sprague-Dawley rats were divided into 5 groups: group 1 (negative control), group 2 (metformin), group 3 (steeping kersen leaves of 250 mg/ 200 gr BW), group 4 (steeping kersen leaves of 500 mg/200 gr BW), and group 5 (steeping kersen leaves of 750 mg/200 gr BW). All groups induced with streptozotocine dose of 65 mg/kg BW and nicotinamide of 230 mg/kg BW for 5 days until the rats were with diabetes mellitus (fasting blood sugar> 135 mg/dl) and then given treatment for 14 days. GOD-PAP enzymatic method used glucose test, whereas a UV-Vis spectrophotometer used SGOT and SGPT test. Data were analyzed using paired t test and One Way Anova.

Results:
The results of statistical tests with paired t test showed significant differences in the levels of SGOT and SGPT before and after treatment (p=0.0001). One way Anova test shows that there is significant decrease in each group (p=0.0001).

Conclusion:
Steeping kersen leaves most effectively reduce levels of SGOT and SGPT in the dose of 750 mg/200 gr BW.

REFERENCES (27)
1.
American Diabetes Association (ADA). Position Statement; Standards of Medical Care in Diabetes. Diabetes Care, 2013;36(Suppl1):S11-66. https://doi.org/10.2337/dc13-S... PMid:23264422 PMCid:PMC3537269.
 
2.
Animaw W, Seyoum Y. Increasing prevalence of diabetes mellitus in a developing country and its related factors. PlosOne, 2017;10:1371. https://doi.org/10.1371/journa... PMid:29112962 PMCid:PMC5675402.
 
3.
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol., 2011;8(4):228-36. https://doi.org/10.1038/nrendo... PMid:22064493.
 
4.
Wu Y, Ying Y, Tanaka Y, Yang W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int J Med Sci., 2014;11(11):1185-200. https://doi.org/10.7150/ijms.1... PMid:25249787 PMCid:PMC4166864.
 
5.
Wild S, Roglic G. Green A. Global prevalence of diabetes: estimate for the year 2000 and projections for 2030. Diabetes Care, 2004;127(5):1047-53. https://doi.org/10.2337/diacar... PMid:15111519.
 
6.
Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit., 2006;12(7):130-47.
 
7.
Zhang PH, Chen ZW, Lu D. Increased risk of cancer in patients with type 2 diabetes mellitus: a retrospective cohort study in China. BMC Public Health, 2012;12:567. https://doi.org/10.1186/1471-2... PMid:22839452 PMCid:PMC3487805.
 
8.
Kahn SE, Cooper ME, Prato SD. Pathophysiology and treatment of type 2 diabetes: persectives on the past, present and future. Lancet. 2014;22,383(9922):1068-83. https://doi.org/10.1016/S0140-....
 
9.
Gancheva S, Jelenik T, Hernandez EA, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. American J Physiol., 2018;99:3. https://doi.org/10.1152/physre... PMid:29767564.
 
10.
Giovannucci E, Harlan DM, Archer M, Bergenstal RM, Gapstur SM, Habel LA. Diabetes and cancer: a consensus report. Diabetes Care, 2010;33(7):1674-85. https://doi.org/10.2337/dc10-0... PMid:20587728 PMCid:PMC2890380.
 
11.
Krssak M, Winhofer Y, Gobl C, Bischof M, Reiter G, Kautzky-Willer A. Insulin resistance is not associated with myocardial stearismtosis in women. Diabetologia, 2011;54(7):1871-8. https://doi.org/10.1007/s00125... PMid:21491158.
 
12.
Jung UJ, Choi MS. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int J Mol Sci., 2014;15(4):6184-223. https://doi.org/10.3390/ijms15... PMid:24733068 PMCid:PMC4013623.
 
13.
Yamada S. Paradigm Shifts in Nutrition Therapy for Type 2 Diabetes. Keio J Med., 2017;26;66(3):33-43. https://doi.org/10.2302/kjm.20... PMid:28442643.
 
14.
Zakaria Z, Mustapha S, Sulaiman MR, Jais AM, Somchit MN, Abdullah FC. The antinociceptive action of aqueous extract from muntingia calabura leaves: the role of opioid receptors. Med Prlinc Pracyt., 2007;16:130. https://doi.org/10.1159/000098... PMid:17303949.
 
15.
Szkudelski T. The Mechanism of Alloxan and Streptozotocin Action in B Cells of Rat Pancreas. Physiol., 2001;50:536-46.
 
16.
Szkudelski T. Steptozotocin-nicotinamide-induced diabetes in rat characteristics of the experimental model. Exp. Biol. Med., 2012;5(237):481-90. https://doi.org/10.1258/ebm.20... PMid:22619373.
 
17.
Mitruka B, Rawnsley H. Clinical Biochemical and Hematological Reference Values in Normal Experimental Animals and Normal Humans. 2 edition. (Masson, ed.). USA Inc. 1981.
 
18.
Bayrasheva VK, Yu A, Dobronravov VA, Dmitriev YV, Chefu SG, Pchelin IY, Grineva EN. Uninephrectomized High-Fat-Fed Nicotinamide-Streptozotocin-Induced Diabetic Rats: A Model for the Investigation of Diabetic Nephropathy in Type 2 Diabetes. J Diabetes Res., 2016;83:17-50. https://doi.org/10.1155/2016/8... PMid:28090542 PMCid:PMC5206480.
 
19.
Pandya KG, Patel MR, Lau-Cam CA. Comparative study of the binding characteristics to and inhibitory potencies towards PARP and in vivo antidiabetogenic potencies of taurine, 3-aminobenzamide and nicotinamide. J. Biomed. 2010;17:1-16. https://doi.org/10.1186/1423-0... PMid:20804590 PMCid:PMC2994389.
 
20.
Nagarajan S, Manonmani AJ, Duraiswami S, Balasubramanian NK. Effect of Sylmarin on streptozotocin-nicotinamide-Induced Type 2 Diabetic Nephropathy in Rats. Department of pharmacology Swamy Vivekanandha College of Pharmacy, Elayampalayam Tiruchengode, Tamil Nadu, India. IJKD. 2013:117.
 
21.
Ghasemi A. Streptozotocin-nicotinamide induced rat model of type 2 diabetes. Impact Factor: A physiol., 2014;101:2. https://doi.org/10.1556/APhysi... PMid:25532953.
 
22.
Burn KF, DeLanooy CW. Compendium of normal blood values of laboratory animals, with indication of variation. Toxicol Appl Pharmacol., 1966;8:429-37. https://doi.org/10.1016/0041-0....
 
23.
Singh A, Bat TK, Sharma OP. Clinical biochemistry of hepatotoxicity. J Clinic Toxicol., 2011:S-4.
 
24.
Indriawati R, Rose LP, Ulfa SM. The effect of giving lidah buaya (aloe vera) juice to decrease amount of blood glucose and triglycerides in rattus norvegicus induced by alloxan. Majalah Ilmu Faal Indonesia, 2010;9(2).
 
25.
Indriawati R. The effect of rosella red tea steeping (hibiscus sabdariffa l) on fasting glucose level, two hours post prandial and blood triglycerides. Majalah Ilmu Faal Indonesia, 2013;10(2):107-12.
 
26.
Marchesini G, Brizzi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough. Association of nonalcoholic fatty liver disease with insulin resistance. AM J med. 1999;107:405-5. https://doi.org/10.1016/S0002-....
 
27.
Portincasa P, Grattagliano I, Palmieri VO, Palasciano G. The Emerging Problem of Nonalcholic Steohepatitis (NASH). Rom J Gastroenterol., 2005;14:43-51.
 
eISSN:2516-3507
Journals System - logo
Scroll to top